Water Isotopes and Stratus Clouds in CAM5

C. Bardeen, A. Gettelman
NCAR
D. Noone, J. Nusbaumer, T. Wong
University of Colorado

Paleoclimate Working Group
February 17, 2012

low relative HDO content high relative HDO content

[Frankenberg et al.]
Motivation

- New Sectional Cirrus Parameterization
- Focused on UTLS
 - Water Vapor
 - Ice Clouds
 - Heating Rates
- Transport
 - Slow Ascent
 - Convection
 - Monsoon Circulation

[Randel et al. 2012]
Stratiform Parameterization

- MG Two-Moment Scheme [Morrison et al. 2008, Gettelman et al. 2010]
- State Variables
 - Water Vapor
 - Mass
 - Cloud Liquid
 - Mass
 - Number
 - Cloud Ice
 - Mass
 - Number
- Diagnostic Rain & Snow
 - Mass
- Modal Aerosols
- Allows Ice Supersaturation
Cloud Macrophysics

- Revised by Park et al.
- Cloud Fraction
- Liquid Condensation
 - Mass
- Convective Detrainment
 - Mass
Cloud Microphysics

- Morrison-Gettelman Two-Moment Scheme
- Droplet Activation
- Ice Nucleation
- Growth/Evaporation
- Melt/Freeze
- Sedimentation
- Accretion
- Autoconversion
- Precipitation
MG Microphysics Processes

(Ignoring processes that don’t change mass or phase)

<table>
<thead>
<tr>
<th>From/To</th>
<th>Vapor</th>
<th>Liquid</th>
<th>Ice</th>
<th>Rain</th>
<th>Snow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vapor</td>
<td></td>
<td>Activation Condensation</td>
<td>Nucleation Deposition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td>Evaporation</td>
<td>Sedimentation</td>
<td>Bergeron Freezing (I) Freezing (C) Hallet-Mossop</td>
<td>Autoconversion Accretion</td>
<td>Bergeron Accretion</td>
</tr>
<tr>
<td>Ice</td>
<td>Sublimation</td>
<td>Melting</td>
<td>Sedimentation</td>
<td></td>
<td>Autoconversion Accretion</td>
</tr>
<tr>
<td>Rain</td>
<td>Evaporation</td>
<td></td>
<td></td>
<td></td>
<td>Freezing Accretion</td>
</tr>
<tr>
<td>Snow</td>
<td>Sublimation</td>
<td></td>
<td></td>
<td>Melting</td>
<td></td>
</tr>
</tbody>
</table>
Solving for Isotope or Tag

\[
\frac{d\text{ISOTOPE}}{dt} = \alpha \frac{\text{ISOTOPE}}{\text{BULK}} \frac{dBULK}{dt}
\]

- Fractionation Factor
- MG Process Rate
- Isotope Process Rate
- Reservoir Ratio of Source Type
Software Design

• Building on prior work from David Noone with CAM3.0
• Shared Components
 – Water Isotopes (water_isotopes.F90)
 • Isotopic species
 • Fractionation factors
 • Standard Isotope Ratios
 • H$_2$O, HDO, H$_2^{18}$O
 – Water Types (water_types.F90)
 • Phases of water
 • Vapor, Liquid, Ice, Convective Rain, Convective Snow, Stratiform Rain, Stratiform Snow
• CAM Component
 – Water Tracers (water_tracers.F90)
 • Implements CAM Physics Package interface
 • Supports “Water Sets” (1 species, all water types)
 • Calculates tendencies on one or more water sets based upon tendencies to “real” water
• Model Configurations
 – configure –isotope <model>
 – Models: h216o, h216o_hdo, h216o_hdo_h218o
• Namelist Driven
 – Easy to add new species, tags, models
Sample atm_in Namelist

&water_tracer_nl
 isotope_model = 'h216o'
 trace_water = .true.
 wisotope = .false.
 wtrc_add_cvprecip = .true.
 wtrc_add_stprecip = .true.
 wtrc_check_show_types = .true.
 wtrc_check_total_h2o = .true.
 wtrc_check_wset = .true.
 wtrc_detrain_in_macrop = .true.
 wtrc_niter = 10
 wtrc_names = 'H216O', 'H216OL', 'H216OI', 'H216OR', 'H216OS', 'H216Or', 'H216Os'
 wtrc_species_names = 'H216O', 'H216O', 'H216O', 'H216O', 'H216O', 'H216O', 'H216O'
 wtrc_type_names = 'VAPOR', 'LIQUID', 'ICE', 'RAINS', 'SNOWS', 'RAINC', 'SNOWC'
 wtrc_srfpcp_names = 'H216OR', 'H216Or', 'H216OS', 'H216Os'
 wtrc_srfvap_names = 'H216O'
/

Water Vapor
Cloud Liquid

Qmin = 1e-18

Qmin = 0.
Cloud Ice

Qmin = 1e-18

Qmin = 0.
Summary/Future Work

- Still in early stages, but we have implemented a basic framework in CAM for water isotopes and tags linked with stratiform processes, that conserves overall mass to 1 part in 10^{14}.
- Short Term
 - Integrate stratiform & convective code for water tracers
 - Rework ice/liquid sedimentation rates
 - Look for small differences in ice & water fields (application of Qmin?)
 - Implement vapor – liquid isotope equilibrium
 - Test fractionation (HDO and HDO & $H_2^{18}O$ models)
 - Test water tagging
 - Couple precipitation to surface models
- Longer Term
 - Integrate with prognostic precipitation (MG2)
 - Integrate with WACCM5
 - Add HDO from CH_4
 - Integrate with CAM5/CARMA cirrus
- Coordination
 - Hugh Morrison, Michael Levy, Others?