Arctic Synoptic Regimes: Comparing domain wide Arctic cloud observations with CAM4 and CAM5 during similar dynamics

Neil P. Barton
Stephen A. Klein
James S. Boyle
Yuying Y. Zhang

Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory

LLNL-PRES-528380

02/17/2012

CESM-PCWG Meeting
Boulder, CO
Motivation

Arctic Average Comparisons

Bridging the gap: Analyze GCM Arctic cloud production over a large domain with a knowledge of the dynamics.
Data and Models

• Analysis and Model Initialization Data
 – ECMWF Year of Tropical Convection (YOTC) Analysis; ERA-YOTC
 – April 2008 to February 2010
 – Interpolated to 3 hour temporal resolution (original 6)
 – Interpolated to 1.25° Longitude by 0.94° Latitude

• Cloud Data
 – GCM Oriented CALIPSO Cloud Product
 – Cloud fractions calculated along-track at 3-hour temporal resolution
 – About 2 passes every 3 hours

• CAM4 and CAM5 run in *forecast* mode
 – Initialized from the ERA-YOTC analysis, Reynolds SSTs, and NCEP sea-ice
 – CALIPSO cloud simulator
 – Day 2 output analyzed
Synoptic Regimes: A K-means clustering approach

Input Variables:

$\theta_{700} - \theta_{\text{LML}}$

ω_{500}

- Largely followed Rossow et al. 2005 to determine number of clusters
HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

Frequency of Occurrence: HS = 36%, S = 29%, VHS = 24%, UL = 11%

- Assigned GCM clusters by determining the minimum Euclidean distance between the ERA-YOTC cluster centroids and the $\theta_{700} - \theta_{LML}$ and ω_{500} in the GCMs
HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime
CALIPSO simulator

CALIPSO

CAM4

CAM5

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime
HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime
LWPs

<table>
<thead>
<tr>
<th>Eureka, Canada</th>
<th>Observations (g m⁻²)</th>
<th>CAM4 (g m⁻²)</th>
<th>CAM5 (g m⁻²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS</td>
<td>16.4</td>
<td>69.4</td>
<td>15.5</td>
</tr>
<tr>
<td>S</td>
<td>30.8</td>
<td>200.5</td>
<td>21.7</td>
</tr>
<tr>
<td>VHS</td>
<td>6.4</td>
<td>22.1</td>
<td>0.0</td>
</tr>
<tr>
<td>UL</td>
<td>64.9</td>
<td>220.2</td>
<td>6.1</td>
</tr>
</tbody>
</table>

HS = High Stability Regime; S = Stable Regime; VHS = Very-High Stability Regime; UL = Uplift Regime

Neil P. Barton LLNL, PCMDI barton30@llnl.gov
Is the Cloud Response to Changes in Sea Ice dependent on the Thermodynamics and Dynamics?
Conclusions

• **K-means clustering** technique successfully separated *distinct Arctic synoptic regimes*.

• **CAM4 and CAM5 lower tropospheric stabilities** were *larger* than ERA-YOTC in the day 2 forecast.

• *Cloud response* to the removal of *sea ice* is *dependent* on the overlying *thermodynamics*.

• The *improved* boundary layer turbulence and cloud microphysics scheme in *CAM5* resulted a better *boundary layer cloud* compared to CAM4.
Thank You/Questions?

Recently submitted to JGR