CLM-related model evaluations and improvements at the University of Arizona

Paul Shao
Representing Xubin Zeng's group

shao@atmo.arizona.edu

Department of Atmospheric Sciences
University of Arizona
CLM-Related Progresses

CLM4 improvement
- Skin temperature diurnal cycle over arid regions (Zeng et al.)

Land-atmosphere interaction
- Land-precipitation coupling strength (Zeng et al.)
- Impact of interannual climatic variabilities on vegetation (Shao et al.)

CLM evaluations
- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)

Ongoing work (not discussed here)
- Global 1 km hybrid 3-D hydrological modeling
- B2 Landscape Earth Observatory (LEO)
Improve the Skin Temperature Diurnal Cycle over Arid Regions (Zeng et al. 2012; in press)

\[
\ln\left(\frac{z_{om}}{z_{ot}}\right) = 0.36 \left(u_* z_{om}/v\right)^{0.5}
\]

\[
u_{\text{min}} = 0.07 \rho_o/\rho \left(z_{om}/z_{og}\right)^{0.18}
\]

minimum \(K_{\text{soil}} = 0.75 \text{ Wm}^{-1}\text{K}^{-1}\)

Mean absolute deviation (K)

<table>
<thead>
<tr>
<th></th>
<th>Desert Rock</th>
<th>Gaize</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con</td>
<td>1.9</td>
<td>4.6</td>
</tr>
<tr>
<td>New</td>
<td>0.7</td>
<td>1.8</td>
</tr>
</tbody>
</table>
The same formulation for roughness length has been implemented and tested in NCEP GFS operational Model (Zheng et al. 2012; in press)

Significant improvement over semi-arid regions

Significant increase in the number of surface-sensitive satellite brightness temperature data assimilated (not shown)
Land-atmosphere interaction

• *Land-precipitation coupling strength* (Zeng et al.)

• Influence of interannual climatic variabilities on vegetation (Shao et al.)
\[\Gamma = \frac{\Sigma P' E'}{\Sigma P' P'} \]

\(E', P' \) are monthly deviations from climatology

ECMWF 45yr Reanalysis
Γ provides a simple indicator to characterize a GCM’s coupling strength

CCSM3 coupling is too strong

2*CO₂ increases the coupling strength over high latitudes in summer
Land-atmosphere interaction

- Land-precipitation coupling strength (Zeng et al.)

- Impact of interannual climatic variabilities on vegetation (Shao et al.)
 - CLM/DGVM forced by observations from 1950-1999 versus from climatology.
Impact of Climatic Interannual Variabilities on Vegetation (Shao et al. 2011)

Is grass so sensitive to the climatic variability?
fractional cover distribution along the P&T

the expansion of grass is mainly due to the reduction of tree and shrub
Percent coverage differences in relation to mean and standard deviation of climatic factors

Color -- Percent coverage differences

interannual variability of precipitation

Evergreen

Deciduous
CLM evaluations

• *Monthly river flow prediction (or simulation)* (Zeng et al.)

• CMIP5 carbon cycle (Shao et al.)

• Steady state of Fractional Cover/carbon (Sakaguchi et al.)

• Dynamic root function (Christoffersen et al.)

• PFT distribution across Amazon (Moreno et al.)
A water-balance based “toy” model (Zeng et al. 2012; in revision) as good as a neural network for monthly river flow prediction, but the toy model is more robust. They are both much better than CLM4 simulation.

Modified coefficient of efficiency: 0.55-0.93 for Toy model <0.1 for CLM4
CLM-Related Progresses

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- **CMIP5 carbon cycle (Shao et al.)**
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)
CMIP5: GPP /NBP in historical and RCP4.5 exp (Shao et al.)

GPP (Gross Primary Productivity)

NBP (Net Biosphere Productivity)

general pattern: similar
magnitude: very different
discrepancies exist
last 30 year average of global GPP and NBP

GPP : increased in every model; NBP: close to 0 for balance
Trend

correlations between global historical NBP and climatic variables
CLM-Related Progresses

CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- *Steady state of Fractional Cover/carbon (Sakaguchi et al.)*
- Dynamic root function (Christoffersen et al.)
- PFT distribution across Amazon (Moreno et al.)
Years to Reach the Steady State of Fractional Cover (Sakaguchi et al.)

Evergreen Tree PFTs

Average of the three evergreen PFTs

NET Temperate

FPC < 5% is not included

NET Boreal

BET Tropical

- Longer years for dry regions and for NET Boreal
Steady State of Fractional Cover

% of global grid boxes to reach steady state for tree PFTs.

Example: NET temperate

grid boxes with steady state in 201 ~ 300 yrs

grid boxes with steady state in > 500 yrs

<table>
<thead>
<tr>
<th></th>
<th>1 - 100</th>
<th>101 - 200</th>
<th>201 - 300</th>
<th>301 - 400</th>
<th>401 - 500</th>
<th>501 - 599</th>
<th>> 600 or unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET temp</td>
<td>0</td>
<td>17</td>
<td>37</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>37</td>
</tr>
<tr>
<td>NET boreal</td>
<td>0</td>
<td>1</td>
<td>36</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td>37</td>
</tr>
<tr>
<td>BET tropical</td>
<td>0</td>
<td>69</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>BDT tropical</td>
<td>0</td>
<td>77</td>
<td>14</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BDT temp</td>
<td>1</td>
<td>30</td>
<td>36</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>BDT boreal</td>
<td>0</td>
<td>9</td>
<td>30</td>
<td>19</td>
<td>6</td>
<td>5</td>
<td>30</td>
</tr>
</tbody>
</table>

Fractional Vegetation Cover

Total Vegetation Carbon

year

year
CLM evaluations

• Monthly river flow prediction (or simulation) (Zeng et al.)
• CMIP5 carbon cycle (Shao et al.)
• Steady state of Fractional Cover/carbon (Sakaguchi et al.)

• Dynamic root function (Christoffersen et al.)
• PFT distribution across Amazon (Moreno et al.)
Dynamic root function (Christoffersen et al., in prep)

Amazon: Observations indicate root uptake shifts to deeper layers during dry season

Tapajos site, observed changes in soil moisture attributed to root uptake

- **Can CLM and other models capture this dynamic aspect of root function?**
- Use a suite of models:
 - CLM3.5-DGVM, IBIS, JULES, ED2, SiB3, SPA
 - standardized soil physics
 - span range of complexity in treatment of root function

80% of total uptake: wet season = -4m

Fraction of total root uptake

Taken from Bruno et al., 2006
Amazon: Observations indicate root uptake shifts to deeper layers during dry season.

Tapajos site, observed changes in soil moisture attributed to root uptake

- **Can CLM and other models capture this dynamic aspect of root function?**
 - Use a suite of models:
 - CLM3.5-DGVM, IBIS, JULES, ED2, SiB3, SPA
 - standardized soil physics
 - span range of complexity in treatment of root function

- **Fraction of total root uptake**
 - Taken from Bruno et al., 2006
Which model best captures dynamic root behavior?

Difference between wet & dry season depth of root uptake across 4 forest sites

- Deeper uptake in dry season

Christoffersen et al., in prep
Which model best captures dynamic root behavior?

Difference between wet & dry season depth of root uptake across 4 forest sites

Deeper uptake in dry season

Only model with soil-root-leaf hydrodynamics
CLM evaluations

- Monthly river flow prediction (or simulation) (Zeng et al.)
- CMIP5 carbon cycle (Shao et al.)
- Steady state of Fractional Cover/carbon (Sakaguchi et al.)
- Dynamic root function (Christoffersen et al.)
- **PFT distribution across Amazon (Moreno et al.)**
• PFT distribution, after 200 years, shows coverage of both tropical evergreen and deciduous trees.

• CLM4 over-represents deciduous tree cover in Amazonia.
PFT Establishment

- Initially CLM populates the forest composition with the deciduous tropical trees
- Tropical evergreen trees are slow to establish and do not overtake the deciduous composition.
Summary

CLM4 improvement
- Developed formulations to improve skin temperature over arid regions

Land-atmosphere interaction
- Proposed a simple index for land-precipitation coupling strength
- Demonstrated the impact of interannual climate variability on plant distribution in CLM/DGVM

CLM evaluations
- Identified CLM deficiencies in monthly river flow simulation
- Analyzed the CMIP5 carbon cycle
- Analyzed the spinup time in carbon/biomass in CLM-CNDV
- Demonstrated the need for dynamic root function
- Identified the PFT distribution deficiency across Amazon in CLM-CNDV