AMWG-WAWG Joint Session

• Wireless instructions on flip-board
• Calling in instructions are on agenda
• Please do not put the meeting on hold! (music)
• Breaks are 20 minutes, lunch in cafeteria
• Upload talks on laptop before your session (webcasting)
• Sign release form for webcasting
• Reception at 5:00 pm in cafeteria
1:00 Co-chairs welcome and logistics
1:10 Dan Marsh – Comparing WACCM/CCSM4 20th century simulations
1:30 Hanli Liu – Evaluation of an internally generated Quasi Biennial Oscillation in WACCM
1:50 Chuck Bardeen – Cirrus Simulations Using Sectional Microphysics (CAM/CARMA)
2:05 Bo Tan – New parameterization for correcting the "Cold Pole" problem
2:20 Chihoko Yamashita – Gravity waves and high-resolution modeling (using T799 ECMWF)
2:35 Simone Tilmes – The impact of climate engineering on temperatures and precipitation using an idealized solar dimming experiment
2:50 Break
3:10 Charles Jackson – Control climate impacts and the response to greenhouse gas forcings: Small differences, big impacts
3:30 Rich Loft – NCAR computing outlook: Yellowstone and beyond
3:50 Mariana Vertenstein – New component grid capability in CESM
4:10 Peter Lauritzen – Transport schemes and orography datasets in CAM
4:30 AMWG Discussion/WAWG wrap-up
5:00 Reception – ML Cafeteria
Lectures on simulating the climate system
Practical sessions on running CESM, modifying components, and analyzing data
Targeted at graduate student level
 - Max 80 students with financial support for up to 40 students
Acceptance criteria:
 - Preference given to early career graduate students, though we will aim for a mix of graduate students, postdocs, and early career research scientists and faculty
 - Project descriptions and their fit with broader CESM goals and activities
 - Balance attendees across institutions
How to Apply:
 - Application website online at: http://www.cesm.ucar.edu/events/tutorials/073012/announcement.html
 - Application deadline: March 23, 2012
 - Accepted students informed by late April
 - Questions should be directed to Dave Bailey (dbailey@ucar.edu)
Discussion

✓ Specifying orography: resolved and sub-grid scale
 ✓ Should we ultimately go for as unsmoothed as we can tolerate?
 ✓ This will give high-res. low-level flow/rainfall features at low-res.
 ✓ Impact of sub-grid scales on TMS and GWD?

✓ Supporting model versions (released or otherwise)
 ✓ WACCM and CAM low-resolution models (fv4x5, fv2.5x3.3, T31, se_ne15)
 ✓ Do we want to continue support the existing CAM-FV core?
 ✓ What will be the cheap dy-core where throughput matters and scaling is 2nd ary?
 ✓ Functionality of re-gridding and re-mapping

✓ Computing resources
 ✓ Are we ready to exploit Yellowstone?
 ✓ Do we need to think about GPU required parallelism; physics