Chemistry-Climate WG: Current and planned activities

Jean-François Lamarque
Arlene Fiore (Lamont-Doherty)
Peter Hess (Cornell)
ChemClim WG Charter

• The goal of the Chemistry-Climate WG is to continue the development of the representation of chemistry in the CESM and to further our understanding of the interactions between chemistry and climate.

• Scientific motivations include advancing knowledge on past, present and future atmospheric composition, interactions between atmospheric composition and the Earth System, stratosphere-troposphere coupling, and impacts of global composition and climate on air quality.
Participation

United States

• Colorado State University, Fort Collins, CO
• Cornell University, Ithaca, NY
• Jet Propulsion Laboratory, Pasadena, CA
• Lawrence Livermore National Laboratory, Livermore, CA
• Massachusetts Institute of Technology, MA
• NOAA, Boulder, CO
• Pacific Northwest National Laboratory, Richland, WA
• University of Colorado, Boulder, CO
• University of Illinois, Urbana-Champaign, IL

International

• Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain
• University of Leeds, UK
• University of Oslo, Norway
• University of Toronto, Canada
Chemistry in an Earth System Model

Emissions

Natural

Anthropogenic

Chemical reactions

Removal processes

Radiation

Clouds

Biosphere

Snow/ice

Climate and other feedbacks
CAM-chem: chemistry in CESM

Atmosphere Model version 4

Dynamics
Physics
Chemistry

Coupler

Land Model
Ocean Model
Sea-ice Model

Lamarque et al., GMDD, 2011
CAM-chem: chemistry in CESM

Lamarque et al., GMDD, 2011
Why do we need extensive chemistry?

Ozone from the stratosphere:
1-2x10^{13} moles per year

Ozone + radiation + water = 2 OH
2-4x10^{13} moles per year

CH4 + OH -> products
NMHC + OH -> products

> 10x10^{13} moles per year

Methane + NMHC emissions
(e.g. isoprene)
Why do we need extensive chemistry?

Ozone from the stratosphere:
1-2x10^{13} moles per year

Ozone + radiation + water = 2 OH
2-4x10^{13} moles per year

CH4 + OH -> products
NMHC + OH -> products

> 10x10^{13} moles per year

Methane + NMHC emissions (e.g. isoprene)
Climate benefits from methane reductions

Shindell et al., Science, 2012
Global modeling of CH4 lifetime in IPCC AR5

Figure courtesy of V. Naik, GFDL, 2012
Why do we need extensive chemistry?

Ozone from the stratosphere:
1-2x10^{13} moles per year

CH_4 + OH -> products
NMHC + OH -> products
> 10x10^{13} moles per year

Ozone + radiation + water = 2 OH
2-4x10^{13} moles per year

Byproducts
- Ozone
- SOA

Methane + NMHC emissions
(e.g. isoprene)
Aerosols

Primary:
- dust
- soot
- some organics
- pollen
- metals

Secondary:
- sulfate
- nitrate
- ammonium
- most organics

Mixed:
- most !!
Radiative Forcing of Climate

Incoming solar \(\sim 340 \, \text{W m}^{-2} \)

Changes since 1750:

long-lived gases \(\sim 3 \, \text{W m}^{-2} \)
ozone \(\sim 0.4 \, \text{W m}^{-2} \)
aerosols and clouds \(\sim -1 \, \text{W m}^{-2} \)

Forcing by aerosols is largest uncertainty
Not just climate: air quality and mortality

130,000-240,000 premature deaths per year are attributable to PM2.5 and ozone

Fann et al., Risk Analysis, 2011.
Multi-model mean bias
Multi-model mean bias

CMAQ bias (normalized)

McKeen et al., JGR, 2005
Source-receptor relationships

14 models, including CAM-chem

Wild et al., ACP, 2012
Chemistry-climate coupling: BC

Teng et al., in preparation
Chemistry-Climate coupling: single forcing

Precip (1975-1999)-(1850-1874)

Sulfate

Annual average

Units: mm/season
Summary

• Chemistry capability in CESM
• Surface air quality (health & ozone impact on agricultural yields) research possible but beware of biases
• Source-receptor relationship: surface ozone
• Near-field and far-field climate response to regional emissions
Thank you.
Questions?
How Aerosols Affect Radiative Forcing and Climate

- Scattering & absorption of radiation
- Unperturbed cloud
- Increased CDNC (constant LWC) (Twomey, 1974)
- Drizzle suppression. Increased LWC
- Increased cloud height (Pincus & Baker, 1994)
- Increased cloud lifetime (Albrecht, 1989)

- Top of the atmosphere
- Surface

Direct effects

Cloud albedo effect/ 1st indirect effect/ Twomey effect

Cloud lifetime effect/ 2nd indirect effect/ Albrecht effect

Indirect effect on ice clouds and contrails

Heating causes cloud burn-off (Ackerman et al., 2000)

Semi-direct effect

IPCC, 2007
Climate Models Are Sensitive to Aerosol Forcing

11 models compared, each with different aerosol forcing

Trade off between
- aerosol forcing
- climate sensitivity

Climate sensitivity = ΔT_f