The Role of Ocean Coupling in the Atmospheric Response to Arctic Sea Ice Loss

Clara Deser and Bob Tomas
The Role of Ocean Coupling in the Atmospheric Response to Arctic Sea Ice Loss

Latent & sensible heat, longwave radiation

Q_{out}

Sea Ice

Arctic Ocean

$\text{TEMP}\&\text{ALBEDO WATER} > \text{ICE}$
The Role of Ocean Coupling in the Atmospheric Response to Arctic Sea Ice Loss

1) Local ocean warming in areas of ice loss
2) Local and remote ocean T changes

1) Experiments with CAM4-1°
Atmosphere

Ocean

Land

Sea Ice

CCSM4-1° 20th & 21st C

GHG (RCP8.5)
& ozone, aerosols, solar
60 runs each (perturbed initial conditions)
CAM4 Temperature and Sea Level Pressure Response to Sea Ice Loss:

Sensitivity to Local SST Increase
CAM4 Response: SLP and Terrestrial Air Temperature

Weak response despite SST increase

Stronger T response w/SST'

SLP contour interval = 1 hPa

Air Temperature °C

Like CAM3
CAM4 Response: SLP and Terrestrial Air Temperature

Weaker High Pressure w/SST feedback

SLP’ lasts longer with SST’

Intensification of Negative T’ over Central Eurasia Associated with High Pressure Anomaly

Like CAM3

SLP contour interval = 1 hPa

Air Temperature °C
Arctic Amplification:
Role of Sea Ice Loss and Local SST Feedback

December Air Temperature (Land only) °C
The Role of Ocean Coupling in the Atmospheric Response to Arctic Sea Ice Loss

1) Local ocean warming in areas of ice loss
2) Local and remote ocean T changes

2) Experiments with CCSM4-1° (Laura Landrum)