Global pattern of nitrogen limitation: Confronting two global biogeochemical models with observations

R. Quinn Thomas¹, Sönke Zaehle², Pamela H. Templer³, & Christine L. Goodale¹

¹ Department of Ecology and Evolutionary Biology, Cornell University
² Max Planck Institute for Biogeochemistry
³ Department of Biology, Boston University
Nitrogen limitation determines carbon response to environmental charge
Nitrogen limitation determines carbon response to environmental charge

- Nitrogen deposition increasing carbon storage
 (Thomas et al. 2010 Nature Geoscience)
Nitrogen limitation determines carbon response to environmental charge

- Nitrogen deposition increasing carbon storage
 (Thomas et al. 2010 Nature Geoscience)
- Soil warming increasing carbon storage
 (Melillo et al. 2011 PNAS)
Nitrogen limitation determines carbon response to environmental charge

- Nitrogen deposition increasing carbon storage
 (Thomas et al. 2010 Nature Geoscience)
- Soil warming increasing carbon storage
 (Melillo et al. 2011 PNAS)
- Less CO$_2$ fertilization and smaller increase in carbon storage
 (Norby et al. 2010 PNAS; Oren et al. 2001 Nature)
Nitrogen limitation determines carbon response to environmental charge

- Nitrogen deposition increasing carbon storage
 (Thomas et al. 2010 Nature Geoscience)
- Soil warming increasing carbon storage
 (Melillo et al. 2011 PNAS)
- Less CO\(_2\) fertilization and smaller increase in carbon storage
 (Norby et al. 2010 PNAS; Oren et al. 2001 Nature)
What are the patterns of nitrogen limitation in global biogeochemical models?
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle¹*, Philippe Ciais², Andrew D. Friend¹ and Vincent Prieur²
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions
Sönke Zaehle1, Philippe Ciais2, Andrew D. Friend3 and Vincent Prieur2

Buffering capacity of C to changes in N →
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Buffering capacity of C to changes in N

Potential primary productivity (GPP and NPP) limited by nitrogen
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Buffering capacity of C to changes in N

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

By terrestrial ecosystems between 1996 and 2005, and for the increase in radiative forcing resulting from nitrous oxide emissions over the coming century, attributable in part to a steady decline in the ocean.

Buffering capacity of C to changes in N →

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N Variable Vegetation C:N
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0

(Thornton et al. 2009 Biogeosciences)

O-CN

(Zaehle et al. 2011 Nature Geoscience)

Buffering capacity of C to changes in N

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N
Variable Vegetation C:N

Fixed Soil Organic Matter C:N
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Buffering capacity of C to changes in N

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N
Variable Vegetation C:N

Fixed Soil Organic Matter C:N
Variable Soil Organic Matter C:N

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions
Sönke Zaehle¹*, Philippe Ciais², Andrew D. Friend³ and Vincent Prieur²
Test of nitrogen limitation in two global biogeochemical models

CLM-CN 4.0
(Thornton et al. 2009 Biogeosciences)

O-CN
(Zaehle et al. 2011 Nature Geoscience)

Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

P. E. Thornton¹, S. C. Doney², K. Lindsay³, J. K. Moore⁴, N. Mahowald⁵, J. T. Randerson¹, I. Fung⁶, J.-F. Lamarque²,³, J. J. Feddema⁴, and Y.-H. Lee³

Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions

Sönke Zaehle¹, Philippe Ciais², Andrew D. Friend¹ and Vincent Prieur²

Buffering capacity of C to changes in N

Potential primary productivity (GPP and NPP) limited by nitrogen

Fixed Vegetation C:N

Variable Vegetation C:N

Fixed Soil Organic Matter C:N

Variable Soil Organic Matter C:N

Differing mechanisms governing N loss
Global nitrogen fertilization experiment

- 25 year simulations (1985-2009)
- Nitrogen applied globally at five levels continuously
 - Low application to parallel plausible changes in nitrogen deposition (0.5 g N m$^{-2}$ yr$^{-1}$)
 - Higher applications to parallel field experimental additions of nitrogen fertilizer to terrestrial ecosystems (2.0, 4.0, 10.0 g N m$^{-2}$ yr$^{-1}$)
 - High application to test nitrogen saturation (30.0 g N m$^{-2}$ yr$^{-1}$)
- Same climate inputs and land-use history
Global nitrogen fertilization response: High addition (30.0 g N m\(^{-2}\) yr\(^{-1}\))

\[\Delta \text{Net Primary Productivity (CLM-CN)} \]
Global nitrogen fertilization response: High addition (30.0 g N m$^{-2}$ yr$^{-1}$)

\[\Delta \text{Net Primary Productivity (O-CN)} \]

CLM-CN more responsive to nitrogen than O-CN

Model comparison to data: Model response compared to observations

- Nitrogen fertilization experiments
- 15N tracer studies
- Plot/small catchment nitrogen budgets

Model comparison to data: NPP response to N fertilization

ANPP response ratio (fertilization / control)

- Grasslands: N = 39
- Temperate/Boreal Forests: N = 23

Model comparison to data: 15N Tracer studies (temperate and boreal forests)

Observations from Templer et al. in revision. *Ecology*

Thomas *et al.* In prep. *Glob. Ch. Biol.*

- Study length = 3 months - 2 yrs
 - Vegetation (n = 17)
 - Soil (n = 19)
 - Not recovered (n = 16)
Model comparison to data:
15N Tracer studies (temperate and boreal forests)

Study length = 3 months - 2 yrs
Vegetation (n = 17)
Soil (n = 19)
Not recovered (n = 16)

% of nitrogen added to ecosystem

Observations
CLM-CN
OCN

Observations from Templer et al. In revision. *Ecology*
Model comparison to data: 15N Tracer studies (temperate and boreal forests)

Study length = 3 months - 2 yrs

Vegetation (n = 17)
Soil (n = 19)
Not recovered (n = 16)

Observations from Templer et al. In revision. *Ecology*
Model comparison to data:

15N Tracer studies (temperate and boreal forests)

Study length = 3 months - 2 yrs

Vegetation (n = 17)
Soil (n = 19)
Not recovered (n = 16)

Observations from Templer et al. In revision. *Ecology*
Model comparison to data:
Plot/Small Catchment Nitrogen Budgets

Temperate and boreal forests
n = 209

Observations from NiRENA project: Goodale et al.

Observations from NiRENA project: Goodale et al.
Model comparison to data:
Plot/Small Catchment Nitrogen Budgets

Temperate and boreal forests
n = 209

- Observations
- CLM-CN
- OCN

Background leaching from nitrogen fixation inputs
Leaching from nitrogen deposition inputs

Observations from NiRENA project: Goodale et al.
Conclusions and Implications
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen
Conclusions and Implications

- CLM-CN and O-CN have dramatically different responses to added nitrogen
 - O-CN: NPP not responsive enough to nitrogen
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen
 • O-CN: NPP not responsive enough to nitrogen
 • N limitation is too weak
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen
 • O-CN: NPP not responsive enough to nitrogen
 • N limitation is too weak
 • Are the buffering mechanisms too strong?
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen
 • O-CN: NPP not responsive enough to nitrogen
 • N limitation is too weak
 • Are the buffering mechanisms too strong?
 • CLM-CN: NPP too responsive to nitrogen
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen

 • O-CN: NPP not responsive enough to nitrogen
 • N limitation is too weak
 • Are the buffering mechanisms too strong?

 • CLM-CN: NPP too responsive to nitrogen
 • Potential GPP is too high
Conclusions and Implications

• CLM-CN and O-CN have dramatically different responses to added nitrogen

 • O-CN: NPP not responsive enough to nitrogen
 • N limitation is too weak
 • Are the buffering mechanisms too strong?

 • CLM-CN: NPP too responsive to nitrogen
 • Potential GPP is too high
 • N retention is too low - NPP does not saturate even at 30 g N m$^{-2}$ yr$^{-1}$
Conclusions and Implications (cont’d)
Conclusions and Implications (cont’d)

• Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets
Conclusions and Implications (cont’d)

• Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets
 • Differentiate among models
Conclusions and Implications (cont’d)

- Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets
 - Differentiate among models
 - Provide insights into the nature of nitrogen limitation in global biogeochemical models
Conclusions and Implications (cont’d)

- Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets
- Differentiate among models
- Provide insights into the nature of nitrogen limitation in global biogeochemical models
- Guide model development
Conclusions and Implications (cont’d)

• Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets
 • Differentiate among models
 • Provide insights into the nature of nitrogen limitation in global biogeochemical models
 • Guide model development

• Current research is focused on developing buffering mechanisms in the CLM-CN (variable C:N tissue ratios)
Conclusions and Implications (cont’d)

• Nitrogen fertilization experiments, 15N tracer studies, and nitrogen budgets

 • Differentiate among models

 • Provide insights into the nature of nitrogen limitation in global biogeochemical models

 • Guide model development

• Current research is focused on developing buffering mechanisms in the CLM-CN (variable C:N tissue ratios)

• Future research will focus on testing additional models and expanding the observational data set
Questions?
Questions?

- National Science Foundation
- Cornell Biogeochemistry and Environmental Biocomplexity Program
- Discussion with participants at the 2011 INTERFACE Research Coordination Network meeting in Florida
- Sam Levis and Gordon Bonan at the National Center for Atmospheric Research
Global nitrogen fertilization response (5 yr): High addition (10.0 g N m\(^{-2}\) yr\(^{-1}\))
Global nitrogen fertilization response (5 yr):
High addition (10.0 g N m\(^{-2}\) yr\(^{-1}\))

\(\Delta\) Net Primary Productivity (O-CN)

Global biogeochemical models coupled to climate models: overview
Global biogeochemical models coupled to climate models: overview

[Diagram of biogeochemical cycles and climate interactions]

Zaehle and Dalmonech 2011 Curr. Opin. Env. Sust.
Global biogeochemical models coupled to climate models: overview

Zaehle and Dalomech 2011 Curr. Opin. Env. Sust.
Global biogeochemical models coupled to climate models: overview

Zaehle and Dalomech 2011 Curr. Opin. Env. Sust.
Global biogeochemical models coupled to climate models: overview

Zaehle and Dalonech 2011 *Curr. Opin. Env. Sust.*