Correspondence between short and long timescale systematic errors in CAM4/CAM5 explored by YOTC data

Hsi-Yen Ma
In collaboration with Shaocheng Xie, James Boyle, Stephen Klein, and Yuying Zhang

Program for Climate Model Diagnosis and Intercomparison (PCMDI)
Lawrence Livermore National Laboratory, Livermore, CA, USA

2012 AMWG Meeting, NCAR, Feb 3, 2012
LLNL-PRES-516872
Motivation

- Climate model biases are examined through the Cloud-Associated Parameterizations Testbed (CAPT) approach: A numerical weather prediction technique to evaluate parameterizations of sub-grid scale processes in climate models: To determine their initial drift from the observations.

![Map of CMIP5/AMIP Multi-Model Mean Precipitation Bias (JJA)]
Experiments and Reference Data Sets

• Model:
 – NCAR Community Atmosphere Model, version 4 & 5

• Experiments:
 – Forecast runs (CAPT): Day 1 – Day 6 (during YOTC period)
 • Initialized with ECMWF analysis and prescribed with weekly observed SST
 – Climate run (AMIP): 2008 – 2010 with prescribed weekly SST

• Observational Data Sets:
 – TRMM & GPCP precipitation; CERES Radiation; CALIPSO cloud fractions (comparing with CAM CALIPSO simulator); ECMWF analysis data
Initial Conditions: ECMWF Analysis → NCAR Community Atmosphere Model → 6 days forecast

Hannay et al. (2009)
CAM5 Forecast Skill

The values are comparable to those achieved by the major forecast centers.
- CAM5 vs. CAM4 \(\rightarrow\) remarkably similar (bias is less stronger in CAM5)
- Excessive Pr much of the Tropics; Double ITCZ / Less Pr over the joint area of Indian Ocean, marinetime continent, and western Pacific
- Climate vs. Forecast \(\rightarrow\) less strong but most remarkably similar. Some errors are not clear in Day 2 forecasts (e.g., Double ITCZ)

Xie et al. (2012) in preparation
• CAM5 vs. CAM4 → Overestimation of Net Shortwave at TOA in the southern ocean near 60S. Considerable improvement in CAM5, mainly due to the increase of mid- and low clouds.
• Climate vs. Forecast → remarkably similar.

Xie et al. (2012) in preparation
ANN Mid-level Clouds (CALIPSO simulator)

- CAM5 vs. CAM4 → Considerable improvement in CAM5
- Forecast vs. Climate → Less bias over the western Pacific warm pool (CAM5 Day2)

Xie et al. (2012) in preparation
June-August Mean Precipitation

Too active deep convection over the tropical domain (0-360, 20S-20N) -> positive bias in tropical mean precipitation

Ma et al. (2012) in preparation
Cold bias in the middle- to lower (lower) troposphere
Wet and warm bias is present near the surface

Ma et al. (2012) in preparation
Regional analysis of precipitation bias and moist processes

- Dry bias tendency over (120E-150E, EQ-10N)
- Wet bias tendency over (60E-75E, 5-20N)

Ma et al. (2012) in preparation
Short-term Forecasts vs Long-term Climate

A Taylor diagram to summarize the performance of simulated fields.

Ma et al. (2012) in preparation
Moist Static Energy profiles

Dry Bias

Wet Bias

- Moisture bias is the main contributor to the MSE bias.
- Both regions show similar cold bias profiles.
- Dry (Wet) tendency between 600 – 900 hPa disfavors (favors) deep convection

In reference to ECMWF-YOTC analysis

Ma et al. (2012) in preparation
Summary & Future Work

• The CAPT approach demonstrates the benefit to identify climate model biases through numerical weather prediction technique: Initial drift in precipitation, clouds, temperature, and moisture fields could be identified through Day 1 to Day 3 forecasts. Beyond Day 3 forecasts, model performance converges to mean climate (AMIP) performance. (Similar Day 5 and AMIP error patterns).

• Global tropical analyses on the precipitation suggest that both CAM 4 & 5 tend to produce too much precipitation. This is consistent with higher near surface moisture and temperature, and colder mid-level temperature, especially for intense convective regions.

• Regional analyses on the precipitation over the northwestern Pacific Ocean and southwestern Indian Peninsula suggest that: Dry (Wet) bias of precipitation in the model is associated with anomalous drying (moistening) at lower troposphere. The reason for such drying (moistening) requires further studies.

• Includes high frequency (hourly to daily) and other source of data for analysis (e.g. ARM, Satellite retrievals).
Acknowledgements

• This work is supported by the US DOE Regional and Global Climate and Earth System Model program and the DOE Atmospheric System Research program.

• This work was performed under the auspices of the U.S. DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-PRES-516872

• We would also like to thank ECMWF for providing its operational analysis data to support YOTC studies.
June – August Precipitation Biases

• Both CAM4 & CAM5 show similar bias patterns except bias is smaller in the forecasts
• The bias is enhanced with the forecast lead time.
Too active deep convection over the tropical domain (20S-20N) -> positive bias in tropical mean precipitation

Ma et al. (2012) in preparation

Cold bias over deep convective regions
Vertical Profiles of Cloud Fraction

Ma et al. (2012) in preparation