Preliminary Results on the Coupling of CAM with CLUBB

Peter Bogenschutz1, Andrew Gettelman1, Hugh Morrison1, Vincent Larson2, David Shannen2, Nate Meyer2, Cheryl Craig1

1National Center for Atmospheric Research, Boulder, CO
2University of Wisconsin, Milwaukee, WI

AMWG February 2, 2012
Current CAM5 Physics

- Boundary Layer (Bretherton)
- Deep Convection (ZM)
- Shallow Convection (Park)
- Cloud Macrophysics (Park)
- Microphysics (MG)
- Radiation (RRTM)
- Aerosols (Modal)
Current CAM5 Physics

- Boundary Layer (Bretherton)
- Deep Convection (ZM)
- Shallow Convection (Park)
- Cloud Macrophysics (Park)
- Microphysics (MG)
- Radiation (RRTM)
- Aerosols (Modal)
Current CAM5 Physics

- Boundary Layer (Bretherton)
- Deep Convection (ZM)
- Shallow Convection (Park)
- Cloud Macrophysics (Park)
- Microphysics (MG)
- Radiation (RRTM)
- Aerosols (Modal)
Current CAM5 Physics

- Boundary Layer (Bretherton)
- Deep Convection (ZM)
- Shallow Convection (Park)
- Cloud Macrophysics (Park)
- Microphysics (MG)
- Radiation (RRTM)
- Aerosols (Modal)
Current CAM5 Physics

- Boundary Layer (Bretherton)
- Deep Convection (ZM)
- Shallow Convection (Park)
- Cloud Macrophysics (Park)
- Microphysics (MG)
- Radiation (RRTM)
- Aerosols (Modal)
• CLUBB = Cloud Layers Unified By Binormals

• First developed by Golaz et al. (2002), maintained by University of Wisconsin Milwaukee (Vincent Larson’s group)

• “Incomplete” Third-order turbulence closure centered around an assumed PDF

• Cloud fraction, liquid mixing ratio, and higher-order turbulent moments are closed via a triple joint (temperature, moisture, and vertical velocity) assumed double gaussian PDF.

• Should provide a unified treatment of PBL and shallow moist convection
CAM-CLUBB

- UW PBL (Bretherton and Park), UW Shallow convection (Park and Bretherton), and Cloud macrophysics (Park) are all turned off
- CLUBB is warm cloud parameterization, therefore still strip out a subroutine from Park macrophysics to compute ice cloud fraction
- Detrainment of liquid water into environment still computed per Park macrophysics for deep convection
- CLUBB called after deep convection & before MG, currently with a 5 minute sub-timestep
- Predicted vertical velocity variance passed from CLUBB to MG for SGS vertical velocity needed for aerosol activation
- CLUBB drives the MG microphysics scheme (for both stratified and shallow convective cloud)
CAM-CLUBB Status

- Alive... but premature
- Runs stably in SCAM and globally
- Climate and low clouds resembles planet Earth
- Computational increase is 4% over CAM5*
- CAM-CLUBB code close to being on trunk (code review next couple weeks)
- Lots of science questions, uncertainty, testing, and work remain!
Single Column Testing

- SCAM-CLUBB tested on many boundary layer & deep convective regimes
 - Cumulus: RICO, BOMEX, ARM_CC
 - Stratocumulus: DYCOMS-RF01, DYCOMS-RF02, ATEX
 - Deep convection: GATE, TOGA, ARM97
 - Mixed phase: Storm tracks IOP
DYCOMS2-RF02 - Marine Sc
Current Issues/Questions We Are Facing Globally

- Trade-Wind Cumulus do not precipitate enough via MG, leading to “anvils” at cumulus top and SWCF distributions that are not ideal

- Work at UWM provides strong evidence that prognostic precipitation microphysics (i.e. Morrison microphysics) ameliorates this issue

- Temporary kludge: Increase precipitation efficiency by tuning accretion rates

- Long term solution (~6 months): Implementation of MG2 (prognostic precip)

- Storm track regions (especially SH), look wildly different than CAM-BASE

- Seasonal simulation of marine Sc is a persistent problem in CAM-CLUBB
Low Cloud Amounts

CAM5

CAM-CLUBB

ANN
Shortwave Cloud Forcing

CAM5

cam5_1_17 (yrs 0001)

TOA SW cloud forcing

mean = -52.09 W/m²

ANN

CAM-CLUBB
camclubb_newcore2 (yrs 0001)

TOA SW cloud forcing

mean = -50.88 W/m²

ANN

CERES

TOA SW cloud forcing

mean = -48.59 W/m²

ANN

CERES

TOA SW cloud forcing

mean = -48.59 W/m²

ANN

Cam5_1_17 - CERES

mean = -3.50 W/m²

ANN

Camclubb_newcore2 - CERES

mean = -2.29 W/m²

Thursday, February 2, 12
Problem: Seasonal Simulation of Sc
Problem: Seasonal Simulation of Sc
Ice Water Path

CAM-CLUBB
camclubb_accre6 (yrs 0001)

CAM5
cam5_1_17 (yrs 0001)

camclubb_accre6 - cam5_1_17

Thursday, February 2, 12
Ice Water Path

CAM-CLUBB camclubb_accre6 (yrs 0001)
Total grd-box cloud IWP mean = 12.56 g/m²

ANN

Min = 0.02 Max = 95.12

CAM5 cam5_1_17 (yrs 0001)
Total grd-box cloud IWP mean = 17.95 g/m²

Min = 0.04 Max = 99.37

Ice Mixing Ratio at 60°S and 180°W

Pressure (hPa)

CAM–BASE CAM–CLUBB

Ice Path

(g/m²)

latitute

60S 30S 0 30N 60N

0

200

400

600

800

1000

200

400

600

800

1000

(g/kg)

x 10⁻³

0 2 6 8
Summary & Future Plans

• CAM-CLUBB is alive but premature

• Within striking distance of CAM5 for many scoring metrics... but not quite there yet.

• Still several issues to address, can utilize SCAM (i.e. seasonal Sc, storm tracks)

• Future work will involve moving to sub-columns

• More astute examination with observations (i.e. COSP)

• Investigate aerosol indirect effects and climate sensitivity