Improvement of CLM4 Soil Hydrology by Introducing Micropores/Macropores to the Soil/Aquifer Coupling

Zong-Liang Yang, Guo-Yue Niu, and Mingjie Shi

Prepared for the CESM Land Model Working Group Modeling, 15-17 March, 2011
Motivation

CLM soil moisture seasonal to interannual variability is weaker than observed.

Lawrence et al. (2011)
Water in the Soil Profile

Unsaturated zone (vadose zone)

Capillary Fringe: immediately above the water table
At the base, soil is saturated for all pores; at the top, saturation is limited to micropores.

Water Table

Saturated zone

www.earthdrx.org/poresizegwflow.html
Water in the Soil Profile

The soil pores are analogous to water pipes; small pore (small diameter pipe) \rightarrow great rise.
How to compute the capillary fringe in CLM4?

Do we have distributions of micropores, mesopores, and macropores?

How to compute groundwater recharge in relation to soil/aquifer coupling?
A Simple Groundwater Model (SIMGM)

Water storage in an unconfined aquifer:

\[
dW_a \frac{dt}{dt} = Q - R_{sb} \]

\[
z_{\nabla} = \frac{W_a}{S_y} \]

Recharge Rate:

\[
Q = -K_a \frac{-z_{\nabla} - (\psi_{\text{bot}} - z_{\text{bot}})}{z_{\nabla} - z_{\text{bot}}} \]

\[
= K_a (1 + \frac{\psi_{\text{bot}}}{z_{\nabla} - z_{\text{bot}}}) \]

Modified to consider micropore/macropore effects:

\[C_{\text{mic}} \psi_{\text{bot}} \]

\[C_{\text{mic}} \rightarrow \text{fraction of micropore content} \]

\[0-1 \quad (0 \text{ macropore} \rightarrow \text{free drainage}; \quad 1 \text{ micropore} \rightarrow \text{strong capillary rise}) \]

Niu et al. (2011)
Effects in the Noah LSM

Micropore fraction: $C_{\text{mic}} = 0.5$
Effects in CLM4SP

Illinois (37-44N, 94-86W)

Top 1m Soil Water (mm)

Top 2m Soil Water (mm)

Year

Year

OBS
SP
SP-MOD1
SP-MOD-8
SP-MOD_Y
Summary

Preliminary results show that a simple consideration of micropores/macropores in the soil/aquifer coupling enhances soil moisture variability.

More tests with observed data are warranted.