Ozone pollution (events) in the GFDL AM3 chemistry-climate model

Arlene M. Fiore

Yuanyuan Fang, Meiyun Lin, David Rasmussen Jr.
Larry W. Horowitz, Hiram Levy II, Vaishali Naik

NCAR CESM Chemistry-Climate Working Group Meeting
March 17, 2010
Summertime surface O_3 changes in a warmer climate in the new GFDL chemistry-climate model (AM3) \[\text{[Donner et al., 2011]}\]

Prototype version of AM3: full strat and trop (gas+aerosol) chem plus idealized tracers.

20-year simulations with annually-invariant present-day emissions of ozone and aerosol precursors \[\text{[Fang et al., submitted to JGR]}\]

Present Day Simulation ("1990s"): observed SSTs + sea ice (1981-2000 mean)

Future Simulation ("A1B 2090s"): observed SSTs + sea ice + average 2081-2100 changes from 19 IPCC AR-4 models

Previously noted degradation of summertime EUS O_3 air quality \(\text{e.g., reviews of Jacob and Winner, Atmos. Environ. 2009 and Weaver et al., BAMS, 2009}\)

Previously noted decrease of lower troposphere background O_3 \(\text{e.g., Johnson et al., GRL, 2001; Stevenson et al., JGR, 2006}\)
Changes in pollution events: Incidences of daily max 8-hr O$_3$ $>$ 75 ppb (land only)

FUTURE: ▲ individual years — 20-yr mean (climate change only)

PRESENT: ● individual years — 20-yr mean

Air quality degradation (prior studies suggest cyclones)

Two O$_3$ pollution seasons in S. Asia; climate change impact largest in fall: robust?
Pollution events, Present and Future (Climate change only): Ozone vs. idealized tracers

Shapes of present-day distributions vary by tracer and region
Changes in distributions (especially high extremes) differ

Y. Fang
Idealized tracers (cheaper than full chemistry!) may offer insights into how pollution responds to shifts in climate.

Correlation (r) of regional average daily values with 500 hPa geopotential heights in present-day simulations.

Similar patterns emerge.

Correlation analysis between idealized tracers and meteorological fields useful for identifying meteorological factors controlling build-up of pollution (and how those change in the future).

Y. Fang
High-resolution version of GFDL AM3 global climate-chemistry model

- Nudged to Global Forecasting System U and V
- Up-to-date emissions
 - US NEI 2005
 - Asia INTEX-B scaled to 2010
 - Daily resolved fire emissions
- 1-year coarse-res spin up with and without Asian (15-50N, 95-160E) anthropogenic emissions
- High-res run for Jan-Jul 2010 (NOAA CalNex field campaign)

Surface O$_3$ at 2010-05-20_13:00:00

M. Lin et al., in prep.
AM3 captures daily variability at sonde locations & structure of stratospheric intrusions along U.S. west coast

Influence of this intrusion on surface ozone?

M. Lin et al., in prep
STE event associated with simulated and observed surface O_3 enhancements, May 28-29 2010

Trop. column O_3 (DU)
500 hPa wind speed (contour)

AM3 surface O_3 (ppb)
AQS + CASTNet

May 28

May 29

Suggestive of STE influence at surface; needs further examination with strat O_3 tracer and “background” simulations

M. Lin et al., in prep
The role of Asian Emissions on Ozone Exceedances in Southern California

Mean Asian Ozone at ~800hPa in May 2010

22% of model MDA8 > 60 ppbv would not occur in the absence of Asian emissions

M. Lin, AGU Fall Meeting, Dec 2010
How well does a global chemistry-climate model simulate regional O_3-temperature relationships?

NORTHEAST USA:
monthly average daily max 8-hr avg (MDA8 O_3) vs. monthly avg. daily max. T

AM3 model: 1981-2000
Observed: 1988-1999

Model generally captures observed O_3-T relationships & their seasonal transitions (despite mean T and O_3 biases)

D. Rasmussen Jr. et al., in prep
How large a contribution are temperature biases in chemistry-climate models to surface O₃ biases?

A) Use 2 independent datasets to assess bias in daily max temperature
B) Assume 4 ppb per C in Jun-Aug & 3 ppb per C in Sep applies throughout EUS

→ May be a significant contribution in Aug/Sep, possibly Jul, not Jun
→ Additional factors still at play in model bias, but illustrates critical need for accurate representation of daily T max (diurnal cycle)

D. Rasmussen Jr. et al., in prep