A Generalization of Prather’s Method for Tracer Advection

Robert B. Lowrie

Los Alamos National Laboratory
Computational Physics and Methods Group (CCS-2)
lowrie@lanl.gov

CCSM Ocean Model Working Group Meeting
National Center for Atmospheric Research
Boulder, Colorado
10 - 11 December 2009

Collaborator
Todd Ringler (T-3 LANL)
Overview

- Generalize of Prather’s moment method (JGR 1986) to unsplit advection on general mesh topologies
- Take advantage of existing Lagrange-remap algorithms (Lipscomb & Ringler, MWR 2005)
- Resulting method: Characteristic Discontinuous Galerkin (CDG), which is based on space-time discontinuous Galerkin
- Ultimate goal: Minimize spurious diapycnal mixing (e.g., Griffies et al 2000)
 - Here, our approach is to increase the order-of-accuracy
Outline

1. Review of Prather’s Method
2. Characteristic Discontinuous Galerkin (CDG)
3. Results
Outline

1. Review of Prather’s Method

2. Characteristic Discontinuous Galerkin (CDG)

3. Results
Tracer Advection

Given $\bar{u}(\bar{x}, t)$, solve

$$\partial_t \rho + \nabla \cdot (\rho \bar{u}) = 0,$$ \hspace{1cm} (1a)

$$\partial_t (\rho T) + \nabla \cdot (\rho T \bar{u}) = 0.$$ \hspace{1cm} (1b)

Implies

$$\frac{DT}{Dt} = 0,$$ \hspace{1cm} $$\frac{D}{Dt} \equiv \partial_t + \bar{u} \cdot \nabla.$$

To ensure conservation, we discretize the system (1).
Overview of Prather’s Moment Method

- Within each individual mesh cell, maintain a quadratic representation of $T(x, y)$:

$$T(x, y) = \sum_{p=0}^{2} \sum_{q=0}^{2-p} c_{p,q} x^p y^q.$$

- The 6 coefficients $c_{p,q}$ may be related to 6 moments of $T(x, y)$:

$$m_{p,q} = \int \int_{\text{cell}} x^p y^q T(x, y) \, dx \, dy.$$

Forms 6×6 linear system.

- The coefficients are updated in time as follows:
 1. Advect the polynomial representation.
 2. Compute the new moments of the advected solution.
 3. Back out the polynomial coefficients from the moments.
Some Details of Prather’s Method

- Instead of “$x^p y^q$,” other bases may be used. Prather used tensor-product Legendre polynomials.
- Prather uses dimensional splitting:
 + Reduces geometric complexity
 + Simplifies limiting
 - Restricts time accuracy to at best $O(\Delta t^2)$.
 - May give mesh imprinting.
 - **Restricts the method to logically-rectangular meshes.**
Outline

1. Review of Prather’s Method
2. Characteristic Discontinuous Galerkin (CDG)
3. Results
Solution Representation for quadratic CDG the same as for Prather

- At each time-level n, within each mesh cell Ω_k, expand solution as

\[T(\vec{x}, t^n) = \sum_{j=1}^{N} c_{k,j}^n \beta_{k,j}(\vec{x}), \quad \vec{x} \in \Omega_k. \]

- Example choice for $\beta_{k,j}(\vec{x})$ and $N = 6$ (quadratic):

\[\beta_{k,j}(\vec{x}) \in \{1, x, y, x^2, xy, y^2\}, \]

or some linear combination thereof (such as Legendre polynomials).

- Need method for updating coefficients $c_{k,j}^n$ for each cell-k.
Some manipulations...

- Begin with
 \[\partial_t (\rho T) + \nabla \cdot (\rho T \vec{u}) = 0. \]

- Multiply by a smooth function \(\phi_{k,i}(\vec{x}, t) \) and rearrange:
 \[\partial_t (\phi_{k,i} \rho T) + \nabla \cdot (\phi_{k,i} \rho T \vec{u}) = \rho T \frac{D\phi_{k,i}}{Dt}. \]

- Weak form over a control volume \(\Omega_k \times [t^n, t^{n+1}] \):
 \[\int_{\Omega_k} \left[(\phi_{k,i} \rho T)^{n+1} - (\phi_{k,i} \rho T)^n \right] d\Omega + \int_{t^n}^{t^{n+1}} \int_{\partial \Omega_k} \phi_{k,i} \rho T \vec{u} \cdot \vec{n} ds dt = \int_{t^n}^{t^{n+1}} \int_{\Omega_k} \rho T \frac{D\phi_{k,i}}{Dt} d\Omega dt. \]

- This form is used by space-time discontinuous Galerkin to update the \(c_{k,j}^n \).
The CDG Approach

- Replace

\[\partial_t (\phi, i \rho T) + \nabla \cdot (\phi, i \rho T \vec{u}) = \rho T \frac{D\phi_k, i}{Dt}, \]

with the system

\[\partial_t (\phi, i \rho T) + \nabla \cdot (\phi, i \rho T \vec{u}) = 0, \]
\[\frac{D\phi_k, i}{Dt} = 0. \]

Because we seek \(\frac{DT}{Dt} = 0 \), eq. (2b) might seem redundant. However,

- (2a) maintains conservation
- (2b) is local to each element and can be solved once for all tracers
Solving $\partial_t(\phi_{k,i} \rho T) + \nabla \cdot (\phi_{k,i} \rho T \vec{u}) = 0$

- For a polygon Ω_k with faces $\partial \Omega_{k,f}$, CDG solves the integral form

$$\int_{\Omega_k} \left[(\phi_{k,i} \rho T)^{n+1} - (\phi_{k,i} \rho T)^n \right] d\Omega + \sum_f \int_{\Omega'_{k,f}} (\phi_{k,i} \rho T)^n d\Omega = 0,$$

where $(\Omega'_{k,f}, t^n)$ is the Lagrangian pre-image of the face $\partial \Omega_{k,f} \times [t^n, t^{n+1}]$.

- $\Omega'_{k,f}$ geometry computed using Lagrange-remap (e.g., Lipscomb & Ringler, MWR 2005)

- Integration approximated using quadrature

- First term represents change in the $\phi_{k,i}$-moment, analogous with Prather

- Still need to define $\phi_{k,i}(\vec{x}, t)$
Solving $D\phi_{k,i}/Dt = 0$

- Use a “semi-Lagrangian” approach
- Recall that our solution in each cell is given by

$$T(\vec{x}, t^n) = \sum_{j=1}^{N} c_{k,j}^{n} \beta_{k,j}(\vec{x}), \quad \vec{x} \in \Omega_k.$$

- For a given time interval $t^n \leq t \leq t^{n+1}$, a solution to $D\phi_{k,i}/Dt = 0$ is $\phi_{k,i}(\vec{x}, t) = \beta_{k,i}(\Gamma(\vec{x}, t))$, where

$$\Gamma(\vec{x}, t) = \vec{x} + \int_{t}^{t^{n+1}} \vec{u}(\Gamma(\vec{x}, \xi), \xi) \, d\xi$$

$$= \vec{x} + (t^{n+1} - t)\vec{u}, \quad \text{for } \vec{u} = \text{const.}$$

- Integration of characteristics needed once for ALL tracers.
CDG on a Cartesian Mesh

Quest: Find polynomial representation of solution in center cell at new time level.
“Semi-Lagrangian” Step
Trace characteristics at each node from t^{n+1} to t^n (use RK4)
Find Lagrangian pre-image for each face...

...and break into triangles; see Lipscomb & Ringler (MWR 2005)
Evaluate each integral with quadrature

Below is an example quadrature point, \vec{x}_g
At each quadrature point, trace characteristics...

... from t^n to t^{n+1} to determine $\phi(\vec{x}_g, t^n) = \beta(\vec{\Gamma}_g)$
Properties of CDG(p)

- CDG(p) uses a polynomial basis of order-p, with $p \geq 0$.
- With incremental remap (Lipscomb & Ringler, MWR 2005), stable for CFL < 1. Larger time steps possible with general remap.
- Locally conservative
- At a fixed CFL, error is typically $O(\Delta x^{p+1})$ in space and time
 - But “quasi-accurate:” If pre-image is non-polygonal, then current remap limits overall accuracy to $O(\Delta x^2)$
- Parallelizes well with a single communication per Δt
- Our bounds preserving limiter maintains order-of-accuracy for smooth solutions
 - Enforces $T_{\text{min}} \leq T \leq T_{\text{max}}$
CDG(\(\rho\)): Relationship to Other Methods

- In 1-D with mass coordinates (or \(\rho, \vec{u}\) constant):
 - CDG(0) is equivalent to first-order upwind
 - CDG(1) is equivalent to:
 - Van Leer’s Scheme III (JCP 1977, “exact evolution with \(L^2\)-projection”)
 - Russell & Lerner’s method (JAM 1981)
 - CDG(2) is equivalent to:
 - Van Leer’s Scheme IV (JCP 1977)
 - Prather’s method (JGR 1986)
 - Piecewise-Parabolic Boltzmann (PPB) (Woodward 1986)

- Can be viewed as the following extensions to Prather’s method:
 - Any \(p \geq 0\) (Prather: \(p = 2\))
 - General mesh topologies (Prather: Cartesian)
 - Dimensionally unsplit (Prather: split)
 - Triangle or diamond basis truncation (Prather: triangle)
Outline

1. Review of Prather’s Method
2. Characteristic Discontinuous Galerkin (CDG)
3. Results
Common Properties of Test Cases

- ρ constant
- 2-D unit square, doubly periodic
- Cartesian mesh, $\Delta x = \Delta y$
- CFL = 0.8
- CDG(ρ) used tensor-product Legendre polynomials with triangle truncation
Solid-Body Rotation of a Gaussian Bump

Gaussian bump rotates about center of domain.

$t = 0$ and $t = 1$
Errors for Solid-Body Rotation of a Gaussian Bump

After 1 rotation

In this case, each cell’s Lagrangian pre-image are nearly polygonal.
Deformation of a Gaussian Bump (period = 2)

Stream function: \(\psi(x, y, t) = \cos(\pi t / 2) \sin^2(\pi x) \sin^2(\pi y) / \pi. \) Compute errors at \(t = 2. \)
Sample Results at $t = 1$

32×32 Mesh, exact $T_{\text{max}} = 1$. Both methods used the same Δt (CFL = 0.8)

CDG(1), $T_{\text{max}} = 0.7997$

CDG(3), $T_{\text{max}} = 1.0170$
Sample Results at $t = 2$

32×32 Mesh, exact $T_{\text{max}} = 1$. Approximately 4 cells across initial Gaussian.

- **CDG(1),** $T_{\text{max}} = 0.6080$
- **CDG(2),** $T_{\text{max}} = 0.8685$
- **CDG(3),** $T_{\text{max}} = 0.9872$
Errors for Deformation of a Gaussian Bump

Lagrangian pre-image non-polygonal \Rightarrow CDG accuracy limited to 2nd-order

\[L^2(T_{\text{exact}} - T) \]

#Cells per dimension

-6

-5

-4

-3

-2

-1

Slope 2, 4

CDG(1)

CDG(3)

lowrie@lanl.gov

LA-UR 09-05180

CCSM OMWG 28 / 34
Deformation of a Square (period = 4)

\[\psi(x, y, t) = \cos(\pi t/4) \sin^2(\pi x) \sin^2(\pi y)/\pi, \quad 80 \times 80 \text{ mesh (square } 16 \times 16) \]

\[t = 0 \text{ and } t = 4 \]

\[t = 2 \]
Deformation of a Square (period = 4): No Limiter

Exceeds bounds: $-0.25 \lesssim T \lesssim 1.32$
Deformation of a Square (period = 4): With Limiter

Enforces bounds: $0 \leq T \leq 1$
Limiter maintains accuracy for smooth problems

Deformation of Gaussian bump

Max Error
No Limiter
With Limiter

#Cells per dimension
0.001
0.01
0.1
1

lowrie@lanl.gov
LA-UR 09-05180
CCSM OMWG 32 / 34
Scaling of CPU Time with Number of Tracers

Results normalized by RKDG(3) time for 1 tracer

<table>
<thead>
<tr>
<th>#Tracers</th>
<th>CPU / Tracer / Δt</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>2.5</td>
<td>3.0</td>
</tr>
</tbody>
</table>

lowrie@lanl.gov

LA-UR 09-05180

CCSM OMWG 33 / 34
Summary:

- CDG(p) with incremental remap is
 - stable for CFL < 1
 - $O(\Delta x^{p+1})$ accurate in space and time whenever pre-image is a polygon; otherwise, $O(\Delta x^2)$

- Computational cost increases roughly as 2^p
- Majority of computational work independent of number of tracers
- Van Leer IV, Prather, PPB, ... \Rightarrow CDG(2)

Future work:

- Couple with fluid models
- Other meshes
 - Voronoi mesh: Matthew Buoni (LANL, T-5)
- Adaptive-p