development, spinup procedure, and initial synchronous multi-millennial simulations of a coupled ice sheet / global climate model

Jeremy Fyke¹
Lionel Carter¹
Andrew Mackintosh¹
Andrew Weaver²
David Pollard³
Michael Eby²

¹Antarctic Research Center
Victoria University of Wellington
²Climate Modelling Group
University of Victoria
³Earth and Environmental Systems Institute
Pennsylvania State University
synopsis

• model set-up
 – ice and climate model descriptions
 – mass balance generation and downscaling
 – surface air temperature bias correction
• spin-up procedure
• present model performance
• initial equilibrium-\(\text{CO}_2\) simulations
model description: UVic ESCM
model description: PSUI

- 3D thermomechanical
- ‘heuristic’ combination of shallow ice approximation and vertically averaged shelfy-stream velocities
- implementation of Schoof (2007) grounding line parameterization
• climate model: 3.6°(lon) x 1.8°(lat)
• ice models: 20 km²
coupling

UVic ESCM passes:
• surface mass balance
• sub-shelf melting rate
 (currently non-interactive)
• boundary temperatures

ice model returns:
• revised elevation
• revised surface albedo
• ice sheet distribution
• oceanic heat/moisture fluxes
surface mass balance

- surface mass balance generated by the climate model using energy-moisture balance model and a dynamic sub-grid elevation binning scheme
SAT bias correction

1. obtain monthly SAT bias from NCEP/ERA40 & UVic ESCM long-term monthly mean SAT 1970-2001

2. within EMBM, remove monthly bias from
 – surface air temperature used to calculate sensible heat flux in EMBM
 – saturation specific humidity
 – snow/rain decision
spinup procedure

1850

LGM
model performance, present-day equilibrium: geometry
model performance, present-day equilibrium: melt extent

melt extent: $25 \times 10^7 \text{ km}^2$: orders of magnitude too high!
melt extent: $3 \times 10^5 \text{ km}^2$: near bottom end of 1990-2009 melt extent range
model performance, present-day equilibrium: surface mass balance

Ettema et al. (2009)
GIS SMB: 469 ± 41 Gt/yr

Van den Berg et al. (2006)
AIS SMB: 2520 ± 30 Gt/yr

modelled SMB: 445 Gt/yr

modelled SMB: 2500 Gt/yr
elevated-CO_2 simulations
conclusions

- major ice sheet/climate model coupling complete
- monthly bias correction within EMBM a way to minimize (significant) spurious climate model-derived ice sheet evolution trends
- ice spinup with model-derived glacial/interglacial endmembers a way to minimize forcing discontinuity for ‘future’ simulations
- present model performance compares reasonably with previous modelling and observations
- initial simulations suggest threshold on GIS stability at 4xPAL, and a robust AIS, given constant basal melting