Satellite Remote Sensing of Liquid Water in Cold Clouds for CAM Validation

David L. Mitchell
Desert Research Institute, Reno, Nevada

Robert P. d’Entremont
Atmospheric and Environmental Research, Inc., Lexington, MA
Figure 3. PDF of ice mass fraction as a function of temperature for the ICE case (black filled contours). Model output is from 1000–100hPa and 90°S–90°N. In situ observations from Field et al. [2005] shown for ice (diamond) and liquid (asterisk) dominated conditions. Contours are logarithmic, 3 per decade (1,2,5).
Figure 14. Comparison of fraction of ice, mixed- and liquid-clouds from the present and previous studies. Note that the left-hand and right-hand y-axes are in opposing senses. Lines labelled 1 and 2 should be referred to the left-hand axis and all other curves to the right-hand axis.
1. Use the $12/11 \mu m$ absorption optical depth ratio, β, to estimate the % LW.

2. β is quasi-constant for all-ice clouds but increases with a growing presence of a liquid phase.

3. The mean LW fraction can be estimated from the mean departure of β from its ice threshold value.
Maximum Estimate of β_{eff} vs. Cloud Temperature
From Giraud et al., 1997 J. Applied Meteorology

$\beta_{\text{eff}} \approx 1.12$
0.63 0.86 11.02 um Color composite 1900 UTC 05 Aug 07
Cirrus-only over-ocean pixels
TC4 5 August 2007
$\varepsilon_{11 \mu m} < 0.7$
$T < -20^\circ C$
TC4 22 July 2007

$\varepsilon_{1\mu m} < 0.7$

$T < -20^\circ C$

β_{eff}

Mid-cloud temperature (°K)
Procedure:

1. Use tropical anvil PSD scheme for ice portion & a representative mean diameter & dispersion param. for liquid portion of PSD.

2. Increase LW in droplet PSD until observed and predicted β_{eff} match.
 - Account for changes in n_r/ n_i

Evaluate Uncertainties:

1. Mean droplet size
2. Mean ice particle size
3. m-D power laws for ice
4. Dispersion param. for ice PSD
% LW is sensitive to mean droplet size, but range of β restricts the possibilities.
Dispersion of β at warmer temperatures appears similar to frequency distribution of cloud ice fraction from Korolev et al. (2003, QJRMS).

Frequency vs. ice fraction of cloud for different temperature intervals; From Korolev et al. 2003, QJRMS.
Figure 3. PDF of ice mass fraction as a function of temperature for the ICE case (black filled contours). Model output is from 1000–100hPa and 90°S–90°N. In situ observations from Field et al. [2005] shown for ice (diamond) and liquid (asterisk) dominated conditions. Contours are logarithmic, 3 per decade (1,2,5).
Mean droplet diameter = 10 μm
5 August Case Study Results

TC4 5 August 2007
$e_{11\mu m} < 0.7$
$T < -20^\circ C$

Mean droplet diameter = 10 μm
Sensitivity of D_e to % Liquid Water

TC4 5 August 2007
$\varepsilon_{1\mu m} < 0.7$
$T < -20^\circ C$

Mean Values
Standard Deviations

D_e (μm)

Mid-cloud temperature ($^\circ C$)

6% LW
14% LW
85% LW
Summary

1. The 12/11 μm absorption optical depth ratio (β) exhibits quasi-constant behavior for ice clouds but is sensitive to the presence of a liquid phase, making it a possible metric for estimating the liquid water fraction for LW < 50%.

2. The increase in β can be interpreted using a microphysics/optical property algorithm that attributes liquid water to the small mode of a bimodal PSD.

3. The retrieval of %LW is sensitive to the mean droplet diameter, but the dispersion of β might help define this value.

4. Retrieval algorithm was tested on 2 case studies filtered to select single-layer cirrus clouds. For -35 °C < T < 20 °C, LW levels up to 14% were detected which greatly affect the overall D_e and optical properties.

5. Variability of LW fraction appears consistent with aircraft measurements and CAM4 predictions.
Effective diameter (D_{eff}) in microns

Temperature in C

TC4 field project

- $b[0] = 157.8297129888$
- $b[1] = 1.5804748997$
- $r^2 = 0.7118906543$
TC4 field project

Ice Water Content (IWC) in mg/m³

Effective diameter (D_{eff}) in microns

IWC-aged v D_{eff1}
IWC-anvil v D_{eff2}
IWC-insitu v D_{eff3}

Plot 1 Regr

$b[0] = 56.6512804656$
$b[1] = 19.8669796787$
$r^2 = 0.4836738339$
TC4 field project

Temperature in C

Fall velocity (cm/s)

T-aged v Fall velocity (V_t)
T-anvil v Fall Velocity (V_t)
T-insitu v Fall Velocity (V_t)

Plot 1 Regr

\[b[0] = 100.269279103 \]
\[b[1] = 1.0453354674 \]
\[r^2 = 0.490196375 \]
TC4 field project

Ice water content (g/cm³)

Fall velocity (cm/s)

- IWC-aged v V_f
- IWC-anvil v V_f
- IWC-insitu v V_f

Plot 1 Regr

$b[0] = 179.1744629541$

$b[1] = 16.9103765546$

$r^2 = 0.5515896312$
TC4 22 July 2007
TC4 5 Aug. 2007
TWP-ICE 2 Feb. 2006

$-73 < T < -35^\circ C$

β_{eff}

Emissivity at 11 μm
Calculation of ε_{eff} in Retrieval Algorithm

- Based on Parol et al. (1991, JAM) -

Since some scattering may occur, ε retrieved in this way is an effective emissivity, ε_{eff}, which implicitly includes the effects of scattering through its dependence on asymmetry parameter g:

$$
\varepsilon_{\text{eff}}(12 \, \mu\text{m}) = 1 - \left[1 - \varepsilon_{\text{eff}}(11 \, \mu\text{m}) \right]^{\beta_{\text{eff}}}
$$

$$
\beta_{\text{eff}} = \frac{Q_{\text{abs,eff}}(12 \, \mu\text{m})}{Q_{\text{abs,eff}}(11 \, \mu\text{m})}
$$

$$
Q_{\text{abs,eff}} = \frac{Q_{\text{abs}} (1 - \omega_0 g)}{(1 - \omega_0)}
$$

When $g \rightarrow 1$, all scattering is completely forward scattering and radiation is not redistributed.
Wavelength dependence of tunneling

\[Q_{\text{abs}} = 1 - \exp\left(-4\pi n_i d_e / \lambda\right) \]

Refractive Index & \(Q_{\text{abs,ADT}}\)

- \(n_r\) increasing
- 25 \(\mu m\)
- 10 \(\mu m\)
- Ice
- Water

Wavelength (\(\mu m\))