Evaluating parameterized variables in the Community Atmospheric Model along the GCSS Pacific cross-section

Cécile Hannay, Dave Williamson, Rich Neale, Jerry Olson, Dennis Shea

National Center for Atmospheric Research, Boulder

AMWG Meeting, Boulder, February 10-12, 2010
The GCCS Pacific Cross-section

Several cloud regimes: stratocumulus, transition, deep convection

- EUROCS project
 JJA 1998

- GCSS intercomparison
 JJA 1998/2003

- This study
 YOTC: JJA 2008

- Observations
 ISCCP data
 SSM/I product
 CloudSat + Calipso
 GPCP and TRMM precip
 Flash Flux data

- Reanalyses
 ERA-Interim, Merra
Observations along the cross-section

- **Low-level cloud**
- **Cloud fraction**
- **Precipitation**
- **SWCF**
- **LWCF**

- **TRMM**
- **GPCP**

- **CERES-EBAF**
Methodology for the forecasts

Forecast

- **Strategy**
 If the atmosphere is initialized **realistically**, the error comes from the parameterizations deficiencies.

- **Advantages**
 - Evaluate the forecast against observations on a particular day and location
 - Evaluate the nature of moist processes parameterization errors before longer-time scale feedbacks develop.

- **Limitations**
 Accuracy of the atmospheric state?

Evaluation

- AIRS, ISCCP, TRMM, GPCP, SSMI, CloudSat, Flash-Flux, ECWMF analyzes
Ensemble mean forecast and timeseries forecast

Ensemble mean forecast: average data at the same “forecast time”

Timeseries forecast: concatenate data at the same “forecast time” (hours 0-24) from individual forecasts
Model versions

3 versions of CAM

<table>
<thead>
<tr>
<th>CAM3</th>
<th>Release 2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM4</td>
<td>Release April 2010</td>
</tr>
<tr>
<td>“track1”</td>
<td>New physics:</td>
</tr>
<tr>
<td></td>
<td>- Deep convection (Neale and Richter, 2008)</td>
</tr>
<tr>
<td>CAM5</td>
<td>Release June 2010</td>
</tr>
<tr>
<td>“track5”</td>
<td>New Physics:</td>
</tr>
<tr>
<td></td>
<td>- Cloud microphysics (Morrison, Gettelman)</td>
</tr>
<tr>
<td></td>
<td>- Radiative Transfer (Iacono, Collins, Conley)</td>
</tr>
<tr>
<td></td>
<td>- PBL and Shallow convection (Bretherton and Park)</td>
</tr>
<tr>
<td></td>
<td>- Macrophysics (Park, Bretherton, Rasch)</td>
</tr>
<tr>
<td></td>
<td>- Aerosol formulation (Ghan, Liu, Easter)</td>
</tr>
<tr>
<td></td>
<td>- Ice clouds (Gettelman, Liu, Park, Mitchell)</td>
</tr>
</tbody>
</table>
Highlights of the results

• Climate bias appears very quickly
 - where deep convection is active, error is set within 1 day
 - 5-day errors are comparable to the mean climate errors

• CAM3
 - ITCZ: warm/wet bias of the upper troposphere
 too much precipitation and high level cloud
 - StCu: cloud too close to the coast and PBL too shallow

• CAM4/Track 1
 - ITCZ: CAM4 reduces warm/wet bias of the upper troposphere
 dramatic improvement of precipitation
 … but too little high-level cloud compared to observations

• CAM5/Track 5
 - ITCZ: same improvements as with CAM4
 - StCu: better PBL height and low-level cloud fraction
 … but underestimates high-level cloud and LWP
Precipitation: Monthly means, June 2008

• CAM3: overestimates the precipitation in the ITCZ
• CAM4/5: reduction in the ITCZ precipitation at day 1
 precipitation intensity increases later in the forecast
Precipitation timeseries, JJA 2008

At the ITCZ:

- **CAM3**: overestimates the precipitation in the ITCZ, rains all the time

- **CAM4/5**: reduction in the ITCZ precipitation, better correlation with observed precipitation, underestimates strong events

Forecast at day 1

Correlation with TRMM

- TRMM
 - CAM3 (0.50)
 - CAM4 (0.70)
 - CAM5 (0.66)

Mixing parcel ⇔ env

- No mixing
- Allows mixing
Precipitation timeseries, JJA 2008

Forecast at day 1

TRMM
CAM3 (0.50)
CAM4 (0.70)
CAM5 (0.66)

Correlation with TRMM

Relative humidity

CAM4/5: precipitation better connected to mid-troposphere
Precipitation timeseries, JJA 2008

Correlation with TRMM

CAM3 (0.50)
CAM4 (0.70)
CAM5 (0.66)

Forecasts at day 1 and day 5 show decreasing correlation with observations for CAM4 and CAM5 in 5-day forecasts.
Moisture profile in the stratocumulus regime

Moisture in CAM4

- **Day 0**
- **Day 1**
- **Day 3**
- **Day 5**

CAM4: PBL collapses

Dry and surface-driven PBL scheme

Moisture in CAM5

CAM5: PBL height is maintained

scheme based on prognostic TKE w/ explicit entrainment at top of PBL
Water vapor budget in the stratocumulus regime

\[
\frac{\partial q}{\partial t} = -V \cdot \nabla q - \omega \frac{\partial q}{\partial p} + Q_{PBL} + Q_{\text{shallow}} + Q_{\text{cloud-water}}
\]

Advective tendencies

Total physics tendency: \(Q_{\text{phys}} \)

Q_{\text{phys}} \text{ in CAM4}

- Total
- PBL
- shallow conv.
- cloud-water

Q_{\text{phys}} \text{ in CAM5}

- Pressure (hPa)
- Moisture tendency (g/kg/day)
Conclusion

- **CAM forecasts** allows for diagnosing parameterization errors in different cloud regimes

- **CAM3**
 - too much precipitation near ITCZ (deep convection scheme: no mixing between the parcel and its environment)
 - PBL too shallow in StCu (dry and surface-driven PBL scheme)

- **CAM4**
 - dramatic improvement of precipitation in the early forecast with the new convection scheme (entrainment of environment)

- **CAM5**
 - new PBL scheme produces deeper and better mixed PBLs (PBL scheme: prognostic TKE with explicit entrainment at top of PBL)