CAM standalone development simulations

Cécile Hannay, Rich Neale, Andrew Gettelman, Sungsu Park, Joe Tribbia, Peter Lauritzen, Andrew Conley, Hugh Morrison, Phil Rasch, Steve Ghan, Xiaohong Liu, and many others

Thanks to: Mat Rothstein, and John Truesdale

AMWG Meeting, Boulder, February 10-12, 2010
Outline

• The evolution of CAM
• Status of the model at the last AWMG meeting
• Development since the last AWMG meeting
• AMIP simulations
• Conclusions
<table>
<thead>
<tr>
<th>Release</th>
<th>2004</th>
<th>2007</th>
<th>April 2010</th>
<th>June 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>CAM3 (L26)</td>
<td>CAM3.5 (L26)</td>
<td>CAM4/Track1 (L26)</td>
<td>CAM5/Track5 (L30)</td>
</tr>
<tr>
<td>Boundary Layer</td>
<td>Holtslag and Boville (93)</td>
<td>Holtslag and Boville</td>
<td>Holtslag and Boville</td>
<td>UW Diagnostic TKE Bretherton et al. (09)</td>
</tr>
<tr>
<td>Shallow Convection</td>
<td>Hack (94)</td>
<td>Hack</td>
<td>Hack</td>
<td>UW TKE/CIN Park et al. (09)</td>
</tr>
<tr>
<td>Deep Convection</td>
<td>Zhang and McFarlane (95)</td>
<td>Zhang and McFarlane</td>
<td>Zhang and McFarlane Neale et al. (08), Richter and Rasch (08) mods.</td>
<td>Zhang and McFarlane Neale et al., Richter and Rasch mods.</td>
</tr>
<tr>
<td>Stratiform Cloud</td>
<td>Rasch and Kristjansson (98)</td>
<td>Rasch and K.</td>
<td>Rasch and K.</td>
<td>Morrison and Gettelman (08) Double Moment</td>
</tr>
<tr>
<td></td>
<td>Single Moment</td>
<td>Single Moment</td>
<td>Single Moment</td>
<td>Park Macrophysics Park Macrophysics</td>
</tr>
<tr>
<td>Radiation</td>
<td>CAMRT (01)</td>
<td>CAMRT</td>
<td>CAMRT</td>
<td>RRTMG Iacono et al. (2008)</td>
</tr>
<tr>
<td>Aerosols</td>
<td>Bulk Aerosol Model (BAM)</td>
<td>BAM</td>
<td>BAM</td>
<td>Modal Aerosol Model (MAM) Ghan et al. (2010)</td>
</tr>
<tr>
<td>Dynamics</td>
<td>Spectral</td>
<td>Finite Volume (96,04)</td>
<td>Finite Volume</td>
<td>Finite Volume</td>
</tr>
</tbody>
</table>

Courtesy: Rich Neale
Development status at Breckenridge

- **CAM4 (Track 1)**: Frozen model
- **CAM5 (Track 5)**: Still in development

standalone simulation: competitive with CAM4 (Track 1)

coupled simulation: worse than CAM4 (Track 1)

- too low clear-sky OLR and LWCF
- sea-ice too thin
- excessive precipitation over tropical land
 - => affects river run-off
- aerosol indirect effect: ~1.5 W/m²
- no big volcanoes eruption
What happened since Breckenridge?

Since Breckenridge
• CAM5 (Track 5): 200 CAM standalone experiments

Some highlights of the accomplishments
• Improved parameterization of autoconversion
• Improved ice microphysics
• Turned on turbulent mountain stress parameterization
• Included the effect of big volcanoes
• Improved low cloud over the Arctic
• 4th-order divergence damping
 + Laplacian near model top
• New emission datasets for aerosols
Autoconversion parameterization

• Convective precipitation is controlled by the **autoconversion rate** (~ process of coalescence that leads to the formation of new rain drops)

• Precipitation formation is **easier over ocean** than land (over land: more CCN => smaller droplet => less rain)

• Improved parameterization

 Autoconversion efficiency: $c_0(\text{ocn}) > c_0(\text{Ind})$
Tropical precipitation, DJF

CMAP

New parameterization of autoconversion reduces the excessive land precipitation

CAM5 (Track 5) - CMAP

Same autoconversion rate over land and ocean

CAM5 (Track 5) - CMAP

Autoconversion rate weaker over land
Improvement of the ice microphysics

Features
• Reduces the nucleation of ice crystal
• Freezes supercooled rain at -5C

Impact
• Better ice size and concentration
• Increases high cloud fraction
• Improve the spring sea-ice

Courtesy: Andrew Gettelman
Sea-level pressure, ANN

Turned on the Turbulent Mountain Stress (TMS) parameterization (~take into account mountain roughness)

NCEP

CAM5 (Track5)
TMS off

CAM5 (Track5)
TMS on

TMS improves the sea-level pressure
Includes big volcanoes impact

- Use **prescribed volcanic aerosol** mixing ratio

- June 1991: Eruption of the volcano Pinatubo
 - warms stratosphere by 3 K (absorbs upwelling LW)
 - cools troposphere by a few 0.1 K (reflects SW)
Simulations

Model versions
- CAM4 (Track 1)
- CAM5 (Track 5)

Run settings
- AMIP runs with observed SSTs
- Horizontal resolution: finite volume 1.9x2.5 degrees
- Vertical resolution: CAM4 (Track 1): 26 levels
 CAM5 (Track 5): 30 levels

Comparison with observations
- 25-years climos (1978-2002)
Shortwave cloud forcing (SWCF), ANN

\[\text{SWCF} = \text{Net SW}_{\text{all sky}} - \text{Net SW}_{\text{clear sky}} \]

Observations: CERES-EBAF (Energy Balanced And Filled)

CAM4 (Track 1)
Overestimates SWCF in the tropics

CAM5 (Track 5)
More accurate SWCF
SWCF: CERES-EBAF versus ERBE

Impact of the observation dataset
- CAM3 <=> ERBE
- CAM4 and beyond <=> CERES-EBAF
Longwave cloud forcing (LWCF), ANN

Underestimates LWCF in the **mid-latitudes**

Underestimates LWCF everywhere!
Global LWCF and OLR (W/m²)

Track5 underestimates global LWCF by 10 W/m²!
Global LWCF and OLR (W/m²)

LWCF = OLR_{all sky} – OLR_{clear sky}

• Track 5 underestimates clear-sky OLR (and LWCF)
• New radiation code: RRTMG ⇔ CAMRT
• Problem in clear sky longwave is likely due to the vertical distribution of T and q
• Difference in “clear-sky” definition
Both versions of CAM are too moist compared to observations and reanalysis.

CAM5 (Track 5): improvement since Breckenridge.
Tropical precipitation: DJF

Over ocean:
- same precipitation pattern in CAM4 (Track 1) and CAM5 (Track 5)
- same deep convection scheme

excessive land precipitation

improved land precipitation (land autoconversion efficiency)
SWCF in stratocumulus decks: JJA

- Improved SWCF in stratocumulus regions
- Due to the new PBL scheme
PBL height: JJA

CAM4 (Track 1)

CAM5 (Track 5)

CAM5 (Track 5) - CAM4 (Track 1)

- Improved PBL height in stratocumulus regions
- Entrainment of dry air at the top of the cloud => increase PBL height
condense information about variance and RMSE of a particular model run when compared with observations

<table>
<thead>
<tr>
<th></th>
<th>RMSE</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAM3.5</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>CAM4 (Track1)</td>
<td>1.01</td>
<td>1.15</td>
</tr>
<tr>
<td>CAM5 (Track5)</td>
<td>0.89</td>
<td>1.18</td>
</tr>
</tbody>
</table>
Correlation: Space-Time

<table>
<thead>
<tr>
<th>cor coef: Space-Time</th>
<th>CAM3.5</th>
<th>CAM5 (Track 5)</th>
<th>CAM4 (Track 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Level Pressure (ERA40)</td>
<td>0.949</td>
<td>0.967</td>
<td>0.953</td>
</tr>
<tr>
<td>SW Cloud Forcing (CERES2)</td>
<td>0.707</td>
<td>0.726</td>
<td>0.706</td>
</tr>
<tr>
<td>LW Cloud Forcing (CERES2)</td>
<td>0.820</td>
<td>0.832</td>
<td>0.799</td>
</tr>
<tr>
<td>Land Rainfall (30N-30S, GPCP)</td>
<td>0.785</td>
<td>0.832</td>
<td>0.775</td>
</tr>
<tr>
<td>Ocean Rainfall (30N-30S, GPCP)</td>
<td>0.802</td>
<td>0.831</td>
<td>0.793</td>
</tr>
<tr>
<td>Land 2-m Temperature (Willmott)</td>
<td>0.876</td>
<td>0.874</td>
<td>0.873</td>
</tr>
<tr>
<td>Pacific Surface Stress (5N-5S,ERS)</td>
<td>0.872</td>
<td>0.896</td>
<td>0.875</td>
</tr>
<tr>
<td>Zonal Wind (300mb, ERA40)</td>
<td>0.967</td>
<td>0.974</td>
<td>0.967</td>
</tr>
<tr>
<td>Relative Humidity (ERA40)</td>
<td>0.900</td>
<td>0.924</td>
<td>0.895</td>
</tr>
<tr>
<td>Temperature (ERA40)</td>
<td>0.912</td>
<td>0.933</td>
<td>0.918</td>
</tr>
</tbody>
</table>

Green means better
Red means worse
Conclusions (1): CAM development since Breckenridge

CAM4 (Track 1): Frozen model

CAM5 (Track 5): Improvements include

- Improved ice microphysics \Rightarrow better ice # and Re
- Autoconversion $= f(\text{Ind}, \text{ocn}) \Rightarrow$ better land precip
- Turned on turbulent mountain stress \Rightarrow better SLP
- Included the effect of big volcanoes
Conclusions (2): 25-year AMIP simulations

CAM4 (Track 1)

- overestimates SWCF in the tropics
- underestimates LWCF in mid-latitude
- excessive precipitation over land
- poor representation of stratocumulus deck

CAM5 (Track 5)

- better overall score than CAM4 (Track 1)
- better SWCF in the tropics
- worse clear sky OLR and LWCF
- better tropical land precipitation
- improved stratocumulus deck (and PBL height)
Conclusions (3): what’s next?

In CAM5 (Track 5)

- improve precipitation
- clear sky OLR and LWCF
- indirect effect