Plans for *global* high-resolution using CAM

Other efforts
NASA
GFDL

Goals
Better seasonal means?
Regional predictions?
Better statistics/extreme events?

Parameterization Issues
Evaluation and tuning

Proposal: ...
Plans for global high-resolution: Other efforts

NASA/GMAO

FV dycore on cubed sphere grid, - 14, 10, 7 and 3.5-km resolutions, 10-day runs at 3.5-km and longer runs monthly to seasonal at 7- to 10-km, and a series of year-long runs at 14-km. **Nonhydrostatic core** for resolutions finer than 14 km. Projecting “operational” use at 14 km soon.

Physics: Stochastically-modulated RAS, prognostic clouds, Lock PBL,

GFDL

FV dycore on cubed sphere grid 50, 25, 12, and 5-km resolutions. AR5 timeslices with 25 km resolution later this year. NWP runs at 12 km.

Running coupled with AM2 physics at 50 km - “looks pretty good” except for tropical cyclones
Plans for **global** high-resolution using CAM: **Goals**

High frequency Statistics
Precipitation intensity and timing

Improved Seasonal Means in Global Simulations
Probably requires retuning of convection and GW schemes at a minimum

Specific phenomena/Regional climate
- Typhoon, hurricane climatologies
- Midwest MCCs
- Continental diurnal cycles
- Coastal upwelling regimes
PDFs of precipitation intensity (log-log) 30S - 30N

- control
- TRMM
- MERRA
- no deep con
- control ZM only
Seasonal Mean precipitation JJA
1997

A real seasonal mean difference/improvement due to increased resolution!!!
Plans for *global* high-resolution using CAM: Parameterization Issues

Deep Convection
More intermittency seems required. Tuning of this could probably take place in CAPT framework

Gravity Waves
Difficult. Direct global observations of key quantity ($\rho u'w'$) not available. Climate effects (P_{sfc}, U_{200}) require multiple seasons to establish with confidence.
- Cross-grid effects
- resolved vs unresolved (for orographic, convective, frontal sources)

Shallow convection/PBL
No special concerns as DX~10 km

TOA balances/Coupled tuning /Aerosols ...
Sea-level pressure
CAM3.5 (DJF zonal average over years 2-11)
Sea-level pressure
CAM3.5 (DJF zonal average over years 2-11)
Sea-level pressure
CAM3.5 (DJF zonal average over years 2-11)

“ Appropriately re-tuned” GW
8*kwv
4*kwv

Std GW

0.25 degree
NCEP

0.5 degree
As grid size decreases, subgrid orographic variance h' decreases. Orographic stress $\rho u'w' \sim \rho N U k h'^2$ so decrease in h' should be partially offset by increased k (wavenumber) of unresolved waves.

Unfortunately, even at 0.25 we aren’t finished with orographic GW tuning.
Plans for *global* high-resolution using CAM: Proposed *short term* plan

Scalable Dycore (HOMME, MPAS) + CAM5 physics with minor mods.

Concrete Goal: Good typhoon/hurricane climatology (as honestly as possible)

Deep Convection
Stochastic or other grid dependent inhibition applied to ZM/NR and/or modified UW scheme. Org variable?

Prescribed aerosol option
Plans for *global* high-resolution using CAM: **How to stay honest**

CAPT runs
Current problems in convection statistics show up immediately. Improve things in CAPT mode first.

Satellite radiance simulators (e.g. COSP)
CAPT results compared versus high resolution satellite data in case-study mode. YOTC data sets (Hi res analyses satellite data sets)

Doubly-periodic CAM configuration with idealized forcing for physics testing at high resolutions (quasi-CRM).
Gravity Waves

Catch up with WACCM
Frontal, convective sources

High resolution/future version
Less arbitrary orographic forcing – anisotropy? Replace TMS with blocking and non-local (e.g. Beljaars) stress

Horizontal non-locality??

Novel Validation ideas?
Test in doubly-periodic CAM (quasi-CRM)??
High-res satellite data (e.g. AMSU) for T'
0.25 degree resolution, del2 configuration: U & PSL

CAM3.5 (DJF zonal average over years 7-8; using “spun-up” initial condition from a 6 year del2 run with del2=4e6)

8*kwv

Del2=3e5

Del2=4e5 (years 2-6)

NCEP