Coupling between the lower and upper atmosphere as simulated by the Whole Atmosphere Model (WAM)

R. A. Akmaev (NOAA/NCEP/SWPC)
F. Wu, T. J. Fuller-Rowell, & H. Wang
(U. Colorado/CIRES)
Integrated Dynamics in the Earth’s Atmosphere (IDEA) project

Collaborators

- NCEP Environmental Modeling Center (EMC)
- Naval Research Laboratory (NRL)
- National Center for Atmospheric Research (NCAR)
- Others

Sponsored by

- NASA LWS and Heliophysics Theory programs
- AFOSR Multidisciplinary University Research Initiative (MURI) program
Coupled IDEA model

Whole Atmosphere Model (WAM)

Global Ionosphere-Plasmasphere (GIP) Model

WAM/GIP Interface

Spherical/Hybrid Coordinate System

Magnetic Apex Flux-Tube Coordinate System

Neutral Dynamical Spectral Core

Plasma Dynamics & Electrodynamics

Column Physics

Surface Physics

U, V, w & T
O, O₂ & N₂

Uᵢ, Vᵢ & νᵢ
Nᵢ, J & Jₚ

Ui, Vi & νᵢ
Ni, J & Jp
Motivation: Tidal signatures in nightside Equatorial Ionospheric Anomaly (EIA)

The four peaks in diurnal temperature amplitude result from superposition of the migrating (to the west) tide (DW1) and nonmigrating eastward mode with zonal wavenumber 3 (DE3).

IMAGE composite of 135.6-nm O airglow (350–400 km) in March–April 2002 for 20:00 LT and amplitude of modeled diurnal temperature oscillation @ 115 km (Immel et al., 2006).
WAM = Extended GFS + Physics

Operational **Global Forecast System (GFS)**
- T382L64 (~ 0.3°×0.3°, ~ 0–62 km)
- Hydrology, surface exchange processes, ozone transport, radiation, cloud physics, etc.
- 4 forecasts daily
- Ensemble (14 members) forecast up to 16 days

WAM
- 150 layers (~ 0–600 km) ⇒ \(\rho_S/\rho_T \sim 10^{13} \)
- Numerical stability issues
- Timing: T62L150 ~ 8 min/day on 32 P6 nodes
- Column + horizontal-surface physics
- Variable composition ⇒ thermodynamics

Column Physics Interface

- **Spectral Dynamical Core**
- **Horizontal Diffusion, Viscosity, & Conductivity**

Operational Global Forecast System (GFS)

- **Hydrology, surface exchange processes, ozone transport, radiation, cloud physics, etc.**

WAM

- **T382L64 (~ 0.3°×0.3°, ~ 0–62 km)**
- **Hydrology, surface exchange processes, ozone transport, radiation, cloud physics, etc.**
- **4 forecasts daily**
- **Ensemble (14 members) forecast up to 16 days**

WAM

- **150 layers (~ 0–600 km) ⇒ \(\rho_S/\rho_T \sim 10^{13} \)**
- **Numerical stability issues**
- **Timing: T62L150 ~ 8 min/day on 32 P6 nodes**
- **Column + horizontal-surface physics**
- **Variable composition ⇒ thermodynamics**
Composition effects on thermodynamics

Traditional approximation

\[
\frac{d c_p T}{dt} - \frac{1}{\rho} \frac{dp}{dt} = Q
\]

\[
c_p \frac{dT}{dt} - RT \frac{dp}{p dt} = Q
\]

\[
\frac{dT}{dt} - \kappa T \frac{dp}{p dt} = \frac{Q}{c_p}
\]

Consistent approach

\[
\frac{dh}{dt} - \kappa h \frac{dp}{p dt} = Q
\]

\[
h = c_p T
\]

\[
\kappa = \frac{R}{c_p}
\]

Richmond & Matsushita (JGR, 1975), Fuller-Rowell & Rees (JAS, 1980), Akmaev and Juang (QJRMS, 2008)
Validation: DW1 tide @ 100 km

Example: DW1 migrating tidal temperature amplitude compared to TIMED/SABER data analysis (Forbes et al., 2008) @ 100 km.
Validation: DE3 tide in the E-layer

Example: DE3 nonmigrating tidal temperature amplitude compared to TIMED/SABER data analysis (Forbes et al., 2008) in the E-layer dynamo region.

Other tides (e.g., SW2) and variables (winds) validated as well (Akmaev et al., GRL, 2008; Fuller-Rowell et al., GRL, 2008).
• Discovered in ion T at 350 km by ISR observations at Arecibo (Harper, 1973)
• Confirmed in low-latitude AE-E observations at ~260 km (Spencer et al., 1979)
• Mechanism: in-situ nonlinear tide/ion drag and tide/tide interactions (semidiurnal + diurnal) resulting in a terdiurnal oscillation (Mayr et al., 1979)
• Observed regularly by ground-based FPI with amplitudes varying from 20–200 K (50–75 K typical)
• Modeling with comprehensive thermospheric models, e.g., NCAR TIEGCM, largely unsuccessful, at least a factor ~5 too weak (Fesen, 1996)

Midnight temperature maximum (MTM)
MTM in WAM: Variability
MTM in WAM: Spectrum

March 20N T amplitude (K) 285km

December 30S T amplitude (K) 285km
MTM in WAM: Spectral contributions
MTM in WAM: Connection to lower thermosphere
MTM in WAM: Seasonal and latitudinal variability

AE-E data, May–July 1977 (Herrero and Spencer, 1979)
Summary

• WAM has been validated on satellite observations of tides propagating from below to the thermosphere, including the non-migrating waves implicated in the observed global morphology of the ionosphere.

• WAM is the first comprehensive model to realistically reproduce the thermospheric MTM, including its variability. The MTM appears to extend into mid-latitudes in agreement with recent observations.

• Preliminary analysis indicates that the MTM is primarily produced by the terdiurnal and higher-order waves propagating upward from below and possibly interacting with the primary tidal harmonics and dissipative processes in the thermosphere.