VOCALS cloud and surface flux observations for coupled model evaluation

Simon de Szoeke
Chris Fairall

NOAA/ESRL Physical Sciences Division
Simon.deSzoeke@noaa.gov

2009 AMS Annual Meeting, Phoenix, Arizona
7 years of Stratus/VOCALS ship tracks

buoy

2001 Oct 22 Oct 24
2003 Nov 21 Nov 23
2004 Dec 10 Dec 07
2005 Oct 18 Oct 20
2006 Oct 20 Oct 22
2007 Oct 26 Oct 24
2008 Oct 27 Oct 30
2008 Nov 20 Nov 11

degrees latitude

degrees longitude
Stratus synthesis of NOAA ship observations

http://www.esrl.noaa.gov/psd/psd3/synthesis

• Fall 2001, 2003-2008 (7 years) 20°S, 75-85°W.
• Integrate measurements of
 – Surface meteorology
 – Turbulent and radiative fluxes
 – Cloud vertical structure: top, base, and LCL.
 – Drizzle-sensitive Doppler radar (VOCALS 2008)
 – Column water vapor and liquid water path
 – Rawinsonde profiles
 – Aerosols
• Assess model and analysis fluxes from observations.
VOCALS 2008 20° S time series

- **Flux (W m⁻²)**
 - Solar
 - Sensible
 - Longwave
 - Evaporation

- **Temperature (°C)**
 - Sea
 - Air

- **Humidity (g kg⁻¹)**

- **Wind (m s⁻¹)**

Month/Day

10/26 11/2 11/9 11/16 11/23 11/30

20 19 18 17 16

85 75

10 9 8 7 6 5 4 3 2 1 0

0 5 10 15 20
diurnal cycle: 7-year surface heat budget, 20°S

\[\rho C_p \frac{dT}{dt} = R_l + R_s + H + E + \text{residual} \]
Heat fluxes at 20°S

5 October ship sections

Model

WHOI ORS buoy

OAFlux (1984-2002)

CORE (1984-2004)

NOAA ship observations

west longitude
Surface heat balances

40 W m^{-2}
20°S, 75-85°W October average

![Graph showing the relationship between insolation and thermal radiation. The correlation coefficient is r = -0.96. The slope equals -0.67.](image-url)
Cloud observations from the stratus region

- Rawinsondes: atmospheric profiles
- Lidar ceilometer: cloud base
- W-band radar: cloud and hydrometeors
- Boundary layer and cloud top
- Aerosols
- Surface meteorology

How do these measurable quantities regulate radiatively important clouds?

C-130 85° W sections can identify if this is synoptic variability.
- Lowest cloud base is 10% higher than lifting condensation level (LCL).
- Cloud base above 900 m decouples from surface layer.
- Cloud bases were higher and more decoupled in 2008.